当前位置: X-MOL 学术Ultrasonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effect of a transducer’s spatial averaging on an elastodynamic guided wave’s wavenumber spectrum
Ultrasonics ( IF 4.2 ) Pub Date : 2021-03-16 , DOI: 10.1016/j.ultras.2021.106422
Christopher Hakoda , Vamshi Krishna Chillara , Cristian Pantea

Elastodynamic guided waves propagate in an elastic solid which makes it difficult, if not impractical, to place a receiving transducer in the direct path of the propagating wave (as one would for an acoustic wave in a fluid medium). To account for this, receiving transducers are often placed on the surface of the solid waveguide such that the transducer surface is parallel to the wave propagation direction. This transducer orientation introduces spatial averaging, which causes the received signal to have an altered signal amplitude and mode bias. We investigate both of these effects and present a simple model from which we derive a scaling-ratio expression that describes the effects of spatial averaging. We then test its performance using finite-element simulations that incorporate “real-world” assumptions (e.g., transient waves, piezoelectric effects, etc.). The results from the simulations demonstrate that the scaling-ratio can characterize the effects resulting from spatial averaging. The scaling-ratio expression will be particularly useful when designing experiments involving high frequency (small wavelength) guided waves. Lastly, the proposed scaling-ratio expression could be applied to other sensing methods, like Laser Doppler Vibrometry (LDV) or piezoelectric waveguides with inter-digitated transducers, because of its generality. However, the authors are careful to note that the scaling-ratio expression is not intended as a replacement of multi-physics analysis or good experimental design, and the effects of spatial averaging should be avoided whenever possible.



中文翻译:

换能器空间平均对弹性动力导波数谱的影响

弹性动力学的引导波在弹性固体中传播,这使得将接收换能器放置在传播波的直接路径中(如果不是在流体介质中的声波),即使不是不切实际的,也很难做到。为此,通常将接收换能器放置在固体波导的表面上,以使换能器表面平行于波传播方向。这种换能器方向会引入空间平均,这会导致接收信号的信号幅度和模式偏置发生变化。我们研究了这两种效果,并提出了一个简单的模型,从中可以得出描述空间平均效果的缩放比例表达式。然后,我们使用结合“真实世界”假设的有限元模拟(例如,瞬态波,压电效应等)。仿真结果表明,缩放比例可以表征空间平均产生的影响。当设计涉及高频(小波长)导波的实验时,缩放比例表达式将特别有用。最后,由于其通用性,所提出的缩放比例表达式可以应用于其他传感方法,例如激光多普勒振动测定法(LDV)或带有叉指式换能器的压电波导。但是,作者要小心注意,比例比表达式不能替代多物理场分析或良好的实验设计,并且应尽可能避免空间平均的影响。仿真结果表明,缩放比例可以表征空间平均产生的影响。当设计涉及高频(小波长)导波的实验时,缩放比例表达式将特别有用。最后,由于其通用性,所提出的缩放比例表达式可以应用于其他传感方法,例如激光多普勒振动测定法(LDV)或带有叉指式换能器的压电波导。但是,作者要小心注意,比例比表达式不能替代多物理场分析或良好的实验设计,并且应尽可能避免空间平均的影响。仿真结果表明,缩放比例可以表征空间平均产生的影响。当设计涉及高频(小波长)导波的实验时,缩放比例表达式将特别有用。最后,由于其通用性,所提出的缩放比例表达式可以应用于其他传感方法,例如激光多普勒振动测定法(LDV)或带有叉指式换能器的压电波导。但是,作者要小心注意,比例比表达式不能替代多物理场分析或良好的实验设计,并且应尽可能避免空间平均的影响。当设计涉及高频(小波长)导波的实验时,缩放比例表达式将特别有用。最后,由于其通用性,所提出的缩放比例表达式可以应用于其他传感方法,例如激光多普勒振动测定法(LDV)或带有叉指式换能器的压电波导。但是,作者要小心注意,比例比表达式不能替代多物理场分析或良好的实验设计,并且应尽可能避免空间平均的影响。当设计涉及高频(小波长)导波的实验时,缩放比例表达式将特别有用。最后,由于其通用性,所提出的缩放比例表达式可以应用于其他传感方法,例如激光多普勒振动测定法(LDV)或带有叉指式换能器的压电波导。但是,作者要小心注意,比例比表达式不能替代多物理场分析或良好的实验设计,并且应尽可能避免空间平均的影响。

更新日期:2021-03-22
down
wechat
bug