当前位置: X-MOL 学术Acta. Math. Sin. Engl. Ser. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Fractional Orlicz—Sobolev Poincaré Inequality in John Domains
Acta Mathematica Sinica, English Series ( IF 0.7 ) Pub Date : 2021-03-25 , DOI: 10.1007/s10114-021-9359-z
Tian Liang

Let n ≥ 2, β ∈ (0, n) and Ω ⊂ ℝn be a bounded domain. Support that ϕ:[0, ∞) → [0, ∞) is a Young function which is doubling and satisfies

$$\mathop {\sup }\limits_{x > 0} \int_0^1 {{{\phi (tx)} \over {\phi (x)}}{{dt} \over {{t^{\beta + 1}}}} < \infty .} $$

If Ω is a John domain, then we show that it supports a (ϕn/(nβ), ϕ)β-Poincaré inequality. Conversely, assume that Ω is simply connected domain when n = 2 or a bounded domain which is quasiconformally equivalent to some uniform domain when n ≥ 3. If Ω supports a (ϕn/(nβ),ϕ)β-Poincaré inequality, then we show that it is a John domain.



中文翻译:

John Domains中的分数Orlicz-SobolevPoincaré不等式

Ñ ≥2,β&Element;(0,Ñ)和Ω⊂ℝ Ñ是有界域。支持ϕ:[0,∞)→[0,∞)是一个加倍且满足的Young函数

$$ \ mathop {\ sup} \ limits_ {x> 0} \ int_0 ^ 1 {{{\ phi(tx)} \ over {\ phi(x)}} {{dt} \ over {{t ^ {\ beta + 1}}}} <\ infty。} $$

如果Ω是John域,则表明它支持(ϕ n /(n - βϕβ-庞加莱不等式。相反地,假设Ω是简单地连接域时Ñ = 2或这quasiconformally相当于一些均匀域的有界区域时Ñ ≥3.如果Ω支持(φ ñ /(ñ - βφβ -Poincaré不等式,那么我们证明它是一个John域。

更新日期:2021-03-26
down
wechat
bug