当前位置: X-MOL 学术Phys. Status Solidi A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical Absorption of Excimer Laser-Induced Dichlorine Monoxide in Silica Glass and Excitation of Singlet Oxygen Luminescence by Energy Transfer from Chlorine Molecules
Physica Status Solidi (A) - Applications and Materials Science ( IF 2 ) Pub Date : 2021-03-27 , DOI: 10.1002/pssa.202100009
Linards Skuja 1 , Nadège Ollier 2 , Koichi Kajihara 3 , Ivita Bite 1 , Madara Leimane 1 , Krisjanis Smits 1 , Andrejs Silins 1
Affiliation  

An optical absorption (OA) band of interstitial dichlorine monoxide molecules with peak at 4.7 eV and halfwidth 0.94 eV is identified in F2 laser-irradiated (ħω = 7.9 eV) synthetic silica glass bearing both interstitial O2 and Cl2 molecules. Alongside with intrinsic defects, this OA band can contribute to solarization of silica glasses produced from SiCl4. Although only the formation of ClClO is confirmed by its Raman signature, its structural isomer ClOCl may also contribute to this induced OA band. Thermal destruction of this band between 300 °C and 400 °C almost completely restores the preirradiation concentration of interstitial Cl2. An additional weak OA band at 3.5 eV is tentatively assigned to ClO2 molecules. The strongly forbidden 1272 nm infrared luminescence band of excited singlet O2 molecules is observed at 3–3.5 eV excitation, demonstrating an energy transfer process from photoexcited triplet Cl2 to O2. The energy transfer most likely occurs between Cl2 and O2 interstitial molecules located in neighboring nanosized interstitial voids in the structure of SiO2 glass network.

中文翻译:

准分子激光诱导二氧化硅玻璃中一氧化二氯的光吸收和氯分子能量转移激发单线态氧发光

在 F 2激光辐照 ( ħω  = 7.9 eV) 合成石英玻璃中识别出间隙一氧化二氯分子的光学吸收 (OA) 带,其峰值为 4.7 eV,半峰宽为 0.94 eV,同时含有间隙 O 2和 Cl 2分子。除了固有缺陷之外,该 OA 带还有助于由 SiCl 4生产的石英玻璃的日光化。尽管仅通过其拉曼特征证实了 ClClO 的形成,但其结构异构体 ClOCl 也可能有助于这种诱导的 OA 带。该波段在 300 °C 和 400 °C 之间的热破坏几乎完全恢复了间隙 Cl 2的辐照前浓度. 3.5 eV 处的另一个弱 OA 带暂时分配给 ClO 2分子。在 3-3.5 eV 激发下观察到激发的单线态 O 2分子的强烈禁止的 1272 nm 红外发光带,证明了从光激发的三线态 Cl 2到 O 2的能量转移过程。能量转移最有可能发生在位于 SiO 2玻璃网络结构中相邻纳米级间隙空隙中的Cl 2和 O 2间隙分子之间。
更新日期:2021-03-27
down
wechat
bug