当前位置: X-MOL 学术IEEE Trans. Elect. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic Fluctuation of Graphene Nanoribbon MOSFETs Under a Full Quantum Dynamics Framework
IEEE Transactions on Electron Devices ( IF 3.1 ) Pub Date : 2021-03-03 , DOI: 10.1109/ted.2021.3060347
Yawei Lv , Yuan Liu , Lei Liao , Wenjing Qin , Changzhong Jiang

The electronic fluctuation issue of the armchair graphene nanoribbons (AGNRs) is theoretically investigated under a full quantum dynamics framework. Besides the electrons, the behaviors of the C and H nuclei are also quantized, more rigorous than the common classical particle treatment. Simulation results show that the nuclear quantization will boost the atomic vibration and lead to the band structure deformation, resulting in the energy gap ( ${E} _{\mathbf {g}}$ ) variation range from −49% to 32% at room temperature. The decrease of ${E} _{\mathbf {g}}$ is more favorable compared with the increase. Therefore, quantum transport simulations show that the ${E} _{\mathbf {g}}$ fluctuations will increase the leakage current by more than three orders of magnitude in AGNR MOSFETs, degrading the off-state behavior significantly. Moreover, the out-of-order channel structure can also boost the scattering effect, degrading the on-state behavior. The electronic fluctuation caused by atomic vibrations should be highlighted in low-dimensional semiconductor device applications.

中文翻译:

完全量子动力学框架下石墨烯纳米带MOSFET的电子涨落

理论上在完整的量子动力学框架下研究了扶手椅石墨烯纳米带(AGNR)的电子涨落问题。除电子外,还对C和H原子核的行为进行了量化,比普通的经典粒子处理更为严格。仿真结果表明,核量化将促进原子振动并导致能带结构变形,从而导致能隙( $ {E} _ {\ mathbf {g}} $ )在室温下的变化范围是−49%至32%。减少 $ {E} _ {\ mathbf {g}} $ 与增长相比更为有利。因此,量子输运模拟表明 $ {E} _ {\ mathbf {g}} $ 波动将使AGNR MOSFET的泄漏电流增加三个数量级以上,从而显着降低截止状态性能。此外,无序的沟道结构还可以增强散射效果,从而降低导通状态。在低尺寸半导体器件的应用中,应强调由原子振动引起的电子波动。
更新日期:2021-03-26
down
wechat
bug