当前位置: X-MOL 学术J. Appl. Clin. Med. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A diagnostic medical physicist’s guide to the American College of Radiology Fluoroscopy Dose Index Registry
Journal of Applied Clinical Medical Physics ( IF 2.1 ) Pub Date : 2021-03-25 , DOI: 10.1002/acm2.13227
A Kyle Jones 1 , Kevin A Wunderle 2 , Dustin A Gress 3 , Michael Simanowith 3 , Kay Zacharias-Andrews 3 , Shalmali Dharmadhikari 4 , Xinhui Duan 5 , Don-Soo Kim 6 , Usman Mahmood 7 , Steve D Mann 8 , Jeffrey M Moirano 9 , Rebecca A Neill 4 , Alan H Schoenfeld 10
Affiliation  

1 INTRODUCTION

The American College of Radiology (ACR) computed tomography (CT) Dose Index Registry (DIR) has been extraordinarily successful, with dose indices collected for over 102 million CT examinations to date.1, 2 The CT DIR has provided an ongoing source of normative clinical data which has been the gold standard for national and international benchmarking.3

The largest existing normative dataset for fluoroscopically guided procedures is the Radiation Doses in Interventional Radiology (RAD‐IR) study, with a data collection period covering the mid‐ to late 1990’s.4-6 The RAD‐IR study included 2142 clinical interventional fluoroscopy procedures, performed at one of seven sites using a single fluoroscope make and model. Much has changed since the late 1990's, including the scope and number of fluoroscopically guided procedures performed; fluoroscope technology, including the introduction of flat panel image receptors and variable added filtration; informatics, including widespread implementation and availability of the Digital Imaging and Communications in Medicine (DICOM) Radiation Dose Structured Report (RDSR); and regulation, including mandatory reporting of reference air kerma (Ka,r) in the United States starting in 2006.7

More recently, reporting of fluoroscopy dose indices has been included as a Merit Based Incentive Payments System (MIPS) quality measure,8 and the ACR National Radiology Data Registry (NRDRTM) has been recognized as a Qualified Clinical Data Registry (QCDR) for MIPS participation. Finally, fluoroscopy is used in a very wide range of medical procedures, ranging from diagnostic procedures such as barium swallow, barium enema, and cystography to complex image‐guided interventions such as aortic aneurysm repair and hepatic embolization.

The American College of Radiology Fluoroscopy Dose Index Registry (DIR) is the latest addition to the NRDRTM, and the first modality to join Computed Tomography (CT) in the DIR. Launching the DIR is a challenging process, requiring expertise in radiology, fluoroscopy, diagnostic medical physics, and informatics to configure the necessary hardware and software, map clinical facility procedure names to a lexicon of more than 200 standard procedure names, and use summary data reports to perform dose audits and evaluate the clinical use of fluoroscopy. The diagnostic medical physicist, with wide‐ranging content expertise in imaging physics, informatics, and medical imaging equipment, can lend their expertise and guidance to the healthcare enterprise and their healthcare institution during this process.

The purpose of this review is to provide guidance for sites wishing to participate in the Fluoroscopy DIR, and specifically to provide guidance for the diagnostic medical physicist who is assisting a healthcare organization in implementing the ACR Fluoroscopy DIR. The mechanics of participation will be discussed, as will common pitfalls in the process. This review is based largely on the experiences of the diagnostic medical physicists at the nine sites that participated in the pilot phase of the Fluoroscopy DIR. The pilot phase involved data collection for interventional radiology procedures from March 1, 2018 through December 31, 2019, and manual collection of data regarding fluoroscope configuration and use as well as the accuracy and stability of fluoroscope‐reported dose indices.9 Two checklists to aid in preparation for a site launch of the Fluoroscopy DIR have been provided at the end of this review. After reading this review, a site should be able to assemble a Fluoroscopy DIR team and launch the DIR while avoiding some of the major pitfalls that may otherwise be encountered along the way. We recommend that readers of this review also bookmark the NRDRTM Support Page for quick reference when needed.



中文翻译:

美国放射学院荧光透视剂量指数注册中心的诊断医学物理学家指南

1引言

美国放射学院(ACR)的计算机断层摄影(CT)剂量指数注册(DIR)取得了巨大的成功,迄今为止已收集了超过1.02亿个CT检查的剂量指数。1,2 CT DIR不断提供规范的临床数据,这已成为国家和国际基准测试的金标准。3

现有的最大的透视检查指导规范数据集是介入放射学中的辐射剂量(RAD‐IR)研究,其数据收集期涵盖了1990年代中期至后期。4-6RAD‐IR研究包括2142项临床介入性透视检查程序,使用单个荧光镜品牌和型号在七个位置之一进行。自1990年代后期以来,发生了许多变化,包括进行透视检查的范围和数量。荧光镜技术,包括引入平板图像接收器和可变添加过滤;信息学,包括医学数字成像和通信(DICOM)辐射剂量结构报告(RDSR)的广泛实施和可用性;和法规,包括从2006开始在美国强制性报告参考空气比释动能(K a,r。7

最近,荧光透视剂量指数的报告已作为基于绩效的奖励支付系统(MIPS)的质量度量标准而包括在内,8并且ACR国家放射学数据注册中心(NRDR TM)被公认为MIPS的合格临床数据注册中心(QCDR)参与。最后,荧光检查法被广泛用于许多医疗程序中,从诊断程序(如钡餐,钡灌肠和膀胱造影)到复杂的图像引导干预(如主动脉瘤修复和肝栓塞)。

美国放射学荧光透视剂量指数注册中心(DIR)是NRDR TM的最新成员,也是DIR中加入计算机断层扫描(CT)的第一种方式。启动DIR是一个具有挑战性的过程,需要放射学,荧光检查,诊断医学物理学和信息学方面的专业知识来配置必要的硬件和软件,将临床设施程序名称映射到200多个标准程序名称的词典中,并使用汇总数据报告进行剂量审核并评估荧光透视的临床用途。诊断医学物理学家在成像物理学,信息学和医学成像设备方面拥有广泛的专业知识,可以在此过程中向医疗保健企业及其医疗机构提供他们的专业知识和指导。

这篇综述的目的是为希望参加荧光透视DIR的场所提供指导,特别是为正在协助医疗机构实施ACR荧光透视DIR的诊断医学物理学家提供指导。将讨论参与的机制,以及过程中的常见陷阱。这次审查主要基于参与荧光透视DIR试点阶段的9个站点的诊断医学物理学家的经验。试点阶段涉及从2018年3月1日至2019年12月31日进行介入放射学程序的数据收集,以及有关荧光镜配置和使用以及荧光镜报告的剂量指数的准确性和稳定性的手动数据收集。9在本评价的结尾,提供了两个清单,以帮助准备荧光透视DIR的现场发射。阅读此评论后,现场应能够组建荧光透视DIR团队并启动DIR,同时避免沿途可能遇到的一些重大陷阱。我们建议本评论的读者也将NRDR TM支持页面添加为书签,以在需要时快速参考。

更新日期:2021-04-11
down
wechat
bug