当前位置: X-MOL 学术Ann. Appl. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phenological development of subterranean clover cultivars under contrasting environments
Annals of Applied Biology ( IF 2.6 ) Pub Date : 2021-03-23 , DOI: 10.1111/aab.12693
Carmen Teixeira 1 , John Hampton 2 , Derrick Moot 1
Affiliation  

Six subterranean clover cultivars (representing early and late flowering genotypes from three subspecies) were used to describe and quantify their phenological development. The vegetative (V) and reproductive (R) development phases, in response to different environments created by eight sowing dates were quantified. The period from sowing to emergence was constant in thermal time at 110°Cd and the first trifoliate appeared at ~300°Cd. Crops sown in autumn had the longest period from runner initiation until floral bud initiation (R1), which would allow an extended period of grazing, particularly for later flowering cultivars like ‘Denmark’. To maximise seed set (particularly in year 1) a maximum period between R3 and R11 is required (seed set window). This ranged from 319 ± 42.3°Cd for ‘Leura’ to 661 ± 73.1°Cd for ‘Narrikup’. The complete crop life cycle from sowing (V0) to maturity (R11) ranged from 1269 ± 31°Cd (equivalent of 123 ± 6.3 days) for ‘Antas’ sown in July to 2799 ± 47°Cd (300 ± 3.9 days) for ‘Woogenellup’. When sowing occurred in an increasing photoperiod (June–November) the life cycle of all cultivars was 59% shorter than when sown in a decreasing photoperiod. The numeric scale was able to describe all the variation in the phenological phases and could be used to quantify thermal time requirements for specific phenophases. This would allow subterranean clover management to be optimised (husbandry, grazing and seed harvest) at a local level, and provides the basic parameters for inclusion in annual pasture simulation models.

中文翻译:

不同环境下地下三叶草品种的物候发育

六个地下三叶草栽培品种(代表来自三个亚种的早花和晚花基因型)被用来描述和量化它们的物候发育。对营养 (V) 和生殖 (R) 发育阶段进行量化,以响应八个播种日期所创造的不同环境。从播种到出苗的时间在 110°Cd 的热时间中是恒定的,第一个三叶出现在 ~300°Cd。秋季播种的作物从转轮萌发到花蕾萌发 (R1) 的时间最长,这将允许延长放牧时间,特别是对于像“丹麦”这样的晚开花品种。为了最大化种子集(特别是在第 1 年),需要在 R3 和 R11 之间的最长时间(种子集窗口)。这范围从“Leura”的 319 ± 42.3°Cd 到“Narrikup”的 661 ± 73.1°Cd。从播种 (V0) 到成熟 (R11) 的完整作物生命周期范围为 1269 ± 31°Cd(相当于 123 ± 6.3 天)(对于 7 月播种的“Antas”)至 2799 ± 47°Cd(300 ± 3.9 天) 'Woogenellup'。在光周期增加(6 月至 11 月)播种时,所有品种的生命周期比在光周期减少时播种时短 59%。数字标度能够描述物候阶段的所有变化,并可用于量化特定物候阶段的热时间要求。这将允许在地方一级优化地下三叶草管理(畜牧、放牧和种子收获),并提供包含在年度牧场模拟模型中的基本参数。3 天)对于 7 月播种的“Antas”至“Woogenellup”的 2799 ± 47°Cd(300 ± 3.9 天)。在光周期增加(6 月至 11 月)播种时,所有品种的生命周期比在光周期减少时播种时短 59%。数字标度能够描述物候阶段的所有变化,并可用于量化特定物候阶段的热时间要求。这将允许在地方一级优化地下三叶草管理(畜牧、放牧和种子收获),并提供包含在年度牧场模拟模型中的基本参数。3 天)对于 7 月播种的“Antas”至“Woogenellup”的 2799 ± 47°Cd(300 ± 3.9 天)。在光周期增加(6 月至 11 月)播种时,所有品种的生命周期比在光周期减少时播种时短 59%。数字标度能够描述物候阶段的所有变化,并可用于量化特定物候阶段的热时间要求。这将允许在地方一级优化地下三叶草管理(畜牧、放牧和种子收获),并提供包含在年度牧场模拟模型中的基本参数。数字标度能够描述物候阶段的所有变化,并可用于量化特定物候阶段的热时间要求。这将允许在地方一级优化地下三叶草管理(畜牧、放牧和种子收获),并提供包含在年度牧场模拟模型中的基本参数。数字标度能够描述物候阶段的所有变化,并可用于量化特定物候阶段的热时间要求。这将允许在地方一级优化地下三叶草管理(畜牧、放牧和种子收获),并提供包含在年度牧场模拟模型中的基本参数。
更新日期:2021-03-23
down
wechat
bug