当前位置: X-MOL 学术Extremophiles › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular strategies to enhance stability and catalysis of extremophile-derived α-amylase using computational biology
Extremophiles ( IF 2.9 ) Pub Date : 2021-03-22 , DOI: 10.1007/s00792-021-01223-2
Nisha Gupta , Esmil Beliya , Jai Shankar Paul , Shubhra Tiwari , Shriram Kunjam , Shailesh Kumar Jadhav

α-Amylase is the most significant glycoside hydrolase having applications in various industries. It cleaves the α,1–4 glucosidic linkages of polysaccharides like starch, glycogen to yield a small polymer of glucose in α-anomeric configuration. α-Amylase is produced by all the three domains of life but microorganisms are preferred sources for industrial-scale production due to several advantages. Enormous studies and research have been done in this field in the past few decades. Still, it is requisite to work on enzyme stability and catalysis, as it loses its functionality in extreme. As the enzyme loses its structural and catalytic property under extreme environmental conditions, it is mandatory to confer some potential strategies for enhancing enzyme behaviour in such conditions. This limitation of an enzyme can be overcome up to some extent by extremophiles. They serve as an excellent source of α-amylase with outstanding features. This review is an attempt to encapsulate some structure-based strategies for improving enzyme behaviour thereby enabling researchers to selectively amend any of the strategies as per requirement during upstream and downstream processing for higher enzyme yield and stability. Thus, it will provide some cutting-edge strategies for tailoring α-amylase producing organism and enzyme with the help of several computational biology tools.



中文翻译:

使用计算生物学增强极端微生物来源的α-淀粉酶的稳定性和催化作用的分子策略

α-淀粉酶是最重要的糖苷水解酶,在各种行业中都有应用。它会裂解多糖(如淀粉,糖原)的α,1-4糖苷键,生成一个小小的葡萄糖聚合物,呈α-异头异构体构型。α-淀粉酶由生命的所有三个域产生,但是由于具有多个优点,微生物是工业规模生产的优选来源。在过去的几十年中,已经对该领域进行了大量的研究。仍然需要进行酶的稳定性和催化作用,因为它会极端丧失其功能。由于酶在极端的环境条件下会失去其结构和催化性能,因此必须提供一些可能的策略来增强这种条件下的酶行为。酶的这种局限性可以在某种程度上被极端微生物所克服。它们是具有出色功能的α-淀粉酶的极佳来源。这篇综述试图封装一些基于结构的策略来改善酶的行为,从而使研究人员能够根据需要在上游和下游加工过程中选择性地修改任何策略,以提高酶的产量和稳定性。因此,它将在一些计算生物学工具的帮助下,提供一些最先进的策略来定制产生α-淀粉酶的生物和酶。这篇综述试图封装一些基于结构的策略来改善酶的行为,从而使研究人员能够根据需要在上游和下游加工过程中选择性地修改任何策略,以提高酶的产量和稳定性。因此,它将在一些计算生物学工具的帮助下,提供一些最先进的策略来定制产生α-淀粉酶的生物和酶。这篇综述试图封装一些基于结构的策略来改善酶的行为,从而使研究人员能够根据需要在上游和下游加工过程中选择性地修改任何策略,以提高酶的产量和稳定性。因此,它将在一些计算生物学工具的帮助下,提供一些最先进的策略来定制产生α-淀粉酶的生物和酶。

更新日期:2021-03-23
down
wechat
bug