当前位置: X-MOL 学术Cell Calcium › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ryanodine receptor-mediated Ca2+ release and atlastin-2 GTPase activity contribute to IP3-induced dendritic Ca2+ signals in primary hippocampal neurons
Cell Calcium ( IF 4 ) Pub Date : 2021-03-23 , DOI: 10.1016/j.ceca.2021.102399
Omar A Ramírez 1 , Alex Córdova 1 , Mauricio Cerda 2 , Pedro Lobos 1 , Steffen Härtel 2 , Andrés Couve 3 , Cecilia Hidalgo 4
Affiliation  

Neuronal Ca2+ signals are fundamental for synaptic transmission and activity-dependent changes in gene expression. Voltage-gated Ca2+ channels and N-methyl-d-aspartate receptors play major roles in mediating external Ca2+ entry during action potential firing and glutamatergic activity. Additionally, the inositol-1,4,5-trisphosphate receptor (IP3R) and the ryanodine receptor (RyR) channels expressed in the endoplasmic reticulum (ER) also contribute to the generation of Ca2+ signals in response to neuronal activity. The ER forms a network that pervades the entire neuronal volume, allowing intracellular Ca2+ release in dendrites, soma and presynaptic boutons. Despite its unique morphological features, the contributions of ER structure and of ER-shaping proteins such as atlastin - an ER enriched GTPase that mediates homotypic ER tubule fusion - to the generation of Ca2+ signals in dendrites remains unreported. Here, we investigated the contribution of RyR-mediated Ca2+ release to IP3-generated Ca2+ signals in dendrites of cultured hippocampal neurons. We also employed GTPase activity-deficient atlastin-2 (ATL2) mutants to evaluate the potential role of atlastin on Ca2+ signaling and ER-resident Ca2+ channel distribution. We found that pharmacological suppression of RyR channel activity increased the rising time and reduced the magnitude and propagation of IP3-induced Ca2+ signals. Additionally, ATL2 mutants induced specific ER morphological alterations, delayed the onset and increased the rising time of IP3-evoked Ca2+ signals, and caused RyR2 and IP3R1 aggregation and RyR2 redistribution. These results indicate that both RyR and ATL2 activity regulate IP3-induced Ca2+ signal dynamics through RyR-mediated Ca2+-induced Ca2+ release, ER shaping and RyR2 distribution.



中文翻译:

Ryanodine 受体介导的 Ca2+ 释放和 atlastin-2 GTPase 活性有助于原代海马神经元中 IP3 诱导的树突状 Ca2+ 信号

神经元 Ca 2+信号是基因表达中突触传递和活动依赖性变化的基础。电压门控的Ca 2+通道和N-甲基d天冬氨酸受体介导外部CA扮演着重要的角色2+期间动作电位发放和谷氨酸活动条目。此外,内质网 (ER) 中表达的肌醇 1,4,5-三磷酸受体 (IP 3 R) 和兰尼碱受体 (RyR) 通道也有助于产生响应神经元活动的 Ca 2+信号。ER 形成一个遍布整个神经元体积的网络,允许细胞内 Ca 2+在树突、胞体和突触前按钮中释放。尽管具有独特的形态特征,但 ER 结构和 ER 成形蛋白(例如 atlastin(一种富含 ER 的 GTPase,介导同型 ER 小管融合)对树突中 Ca 2+信号产生的贡献仍未报道。在这里,我们研究了 RyR 介导的 Ca 2+释放对培养的海马神经元树突中IP 3产生的 Ca 2+信号的贡献。我们还使用 GTPase 活性缺陷 atlastin-2 (ATL2) 突变体来评估 atlastin 对 Ca 2+信号传导和内质网驻留 Ca 2+的潜在作用渠道分布。我们发现 RyR 通道活性的药理学抑制增加了上升时间并减少了 IP 3诱导的 Ca 2+信号的幅度和传播。此外,ATL2 突变体诱导特定的 ER 形态改变,延迟发作并增加 IP 3诱发的 Ca 2+信号的上升时间,并导致 RyR2 和 IP 3 R1 聚集和 RyR2 重新分布。这些结果表明,RyR 和 ATL2 活性均通过 RyR 介导的 Ca 2+诱导的 Ca 2+释放、ER 成形和 RyR2 分布来调节 IP 3诱导的 Ca 2+信号动力学。

更新日期:2021-03-31
down
wechat
bug