当前位置: X-MOL 学术Wind Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluid–structure interaction simulations of a wind turbine rotor in complex flows, validated through field experiments
Wind Energy ( IF 4.1 ) Pub Date : 2021-03-23 , DOI: 10.1002/we.2639
Christian Grinderslev 1 , Sergio González Horcas 1 , Niels Nørmark Sørensen 1
Affiliation  

Aeroelastic simulations of a 2.3 MW wind turbine rotor operating in different complex atmospheric flows are conducted using high fidelity fluid–structure interaction (FSI) simulations. Simpler blade element momentum (BEM) theory based simulations are likewise conducted for comparison, and measurements from field experiments are used for validation of the simulations. Good agreement is seen between simulated and measured forces. It is found that for complex flows, BEM-based simulations predict similar forces as computational fluid dynamics (CFD)-based FSI, however with some distinct discrepancies. Firstly, stall is predicted for a large part of the blade using BEM-based aerodynamics, which are not seen in either FSI simulations or measurements in the case of a high shear. This leads to a more dynamic structural response for BEM-based simulations than for FSI. For a highly yawed and sheared flow case, the BEM-based simulations overpredict outboard forces for a significant part of the rotation. This emphasizes the need of validation of BEM-based simulations through higher fidelity methods, when considering complex flows. Including flexibility in simulations shows only little impact on the considered rotor for both FSI- and BEM-based simulations. In general, the loading of the blades increases slightly, and the rotor wake is almost identical for stiff and flexible FSI simulations.

中文翻译:

通过现场实验验证的复杂流动中风力涡轮机转子的流固耦合模拟

使用高保真流固耦合 (FSI) 模拟对在不同复杂大气流动中运行的 2.3 MW 风力涡轮机转子进行气动弹性模拟。更简单的基于叶片元素动量 (BEM) 理论的模拟同样用于比较,并且来自现场实验的测量用于验证模拟。在模拟力和测量力之间可以看到良好的一致性。发现对于复杂流动,基于边界元的模拟预测与基于计算流体动力学 (CFD) 的 FSI 相似的力,但存在一些明显的差异。首先,使用基于边界元法的空气动力学来预测大部分叶片的失速,这在 FSI 模拟或高剪切情况下的测量中都看不到。这导致基于边界元模拟的动态结构响应比 FSI 更强。对于高度偏航和剪切的流动情况,基于边界元的模拟高估了旋转的重要部分的外侧力。这强调了在考虑复杂流时需要通过更高保真度的方法验证基于边界元的模拟。在基于 FSI 和 BEM 的模拟中,包括模拟中的灵活性表明对所考虑的转子的影响很小。一般来说,叶片的载荷略有增加,对于刚性和柔性 FSI 模拟,转子尾流几乎相同。这强调了在考虑复杂流时需要通过更高保真度的方法验证基于边界元的模拟。在基于 FSI 和 BEM 的模拟中,包括模拟中的灵活性表明对所考虑的转子的影响很小。一般来说,叶片的载荷略有增加,对于刚性和柔性 FSI 模拟,转子尾流几乎相同。这强调了在考虑复杂流时需要通过更高保真度的方法验证基于边界元的模拟。在基于 FSI 和 BEM 的模拟中,包括模拟中的灵活性表明对所考虑的转子的影响很小。一般来说,叶片的载荷略有增加,对于刚性和柔性 FSI 模拟,转子尾流几乎相同。
更新日期:2021-03-23
down
wechat
bug