当前位置: X-MOL 学术Front. Neurorobotics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A framework for optimizing co-adaptation in body-machine interfaces
Frontiers in Neurorobotics ( IF 3.1 ) Pub Date : 2021-03-22 , DOI: 10.3389/fnbot.2021.662181
Dalia De Santis

The operation of a human-machine interface is increasingly often referred to as a two-learners problem, where both the human and the interface independently adapt their behavior based on shared information to improve joint performance over a specific task. Drawing inspiration from the field of body-machine interfaces, we take a different perspective and propose a framework for studying co-adaptation in scenarios where the evolution of the interface is dependent on the users’ behavior and that do not require task goals to be explicitly defined. Our mathematical description of co-adaptation is built upon the assumption that the interface and the user agents co-adapt towards maximizing the interaction efficiency rather than optimizing task performance. This work describes a mathematical framework for body-machine interfaces where a naïve user interacts with an adaptive interface. The interface, modeled as a linear map from a space with high dimension (the user input) to a lower dimensional feedback, acts as an adaptive “tool” whose goal is to minimize transmission loss following an unsupervised learning procedure and has no knowledge of the task being performed by the user. The user is modeled as a non-stationary multivariate Gaussian generative process that produces a sequence of actions that is either statistically independent or correlated. Dependent data is used to model the output of an action selection module concerned with achieving some unknown goal dictated by the task. The framework assumes that in parallel to this explicit objective, the user is implicitly learning a suitable but not necessarily optimal way to interact with the interface. Implicit learning is modeled as use-dependent learning modulated by a reward-based mechanism acting on the generative distribution. Through simulation, the work quantifies how the system evolves as a function of the learning time scales when a user learns to operate a static versus an adaptive interface. We show that this novel framework can be directly exploited to readily simulate a variety of interaction scenarios, to facilitate the exploration of the parameters that lead to optimal learning dynamics of the joint system, and to provide an empirical proof for the superiority of human-machine co-adaptation over user adaptation.

中文翻译:

用于优化人机界面中的协同适应性的框架

人机界面的操作越来越多地被称为“两个学习者”问题,其中人机界面都基于共享信息独立地调整其行为,以改善特定任务的联合性能。从人机界面领域中汲取灵感,我们采取了不同的观点,并提出了一个框架,用于研究在界面的演变取决于用户的行为并且不需要明确任务目标的情况下的协同适应。定义。我们对协同适配的数学描述建立在以下假设的基础上:界面和用户代理协同适配以最大化交互效率,而不是优化任务性能。这项工作描述了一个人体机界面的数学框架,其中幼稚的用户与自适应界面进行交互。该接口被建模为从高维空间(用户输入)到低维反馈的线性映射,它充当自适应“工具”,其目标是在无监督学习程序的情况下最大程度地减少传输损耗,并且不了解用户正在执行的任务。用户被建模为一个非平稳的多元高斯生成过程,该过程产生一系列在统计上独立或相关的动作。相关数据用于对与实现任务指示的某些未知目标有关的动作选择模块的输出进行建模。该框架假设与此明确目标并行,用户正在隐式地学习一种合适但不一定最佳的方式来与界面进行交互。隐式学习被建模为依赖于使用的学习,该依赖学习通过作用于生成分布的基于奖励的机制进行调制。通过仿真,这项工作可以量化系统在用户学习操作静态界面还是自适应界面时如何根据学习时间尺度进行发展。我们表明,可以直接利用这个新颖的框架来轻松地模拟各种交互场景,以促进对导致关节系统最佳学习动态的参数的探索,并为人机的优越性提供经验证据。共同适应用户适应。隐式学习被建模为依赖于使用的学习,该依赖学习通过作用于生成分布的基于奖励的机制进行调制。通过仿真,这项工作可以量化系统在用户学习操作静态界面还是自适应界面时如何根据学习时间尺度进行发展。我们表明,可以直接利用这个新颖的框架来轻松地模拟各种交互场景,以促进对导致关节系统最佳学习动态的参数的探索,并为人机的优越性提供经验证据。共同适应用户适应。隐式学习被建模为依赖于使用的学习,该依赖学习通过作用于生成分布的基于奖励的机制进行调制。通过仿真,这项工作可以量化系统在用户学习操作静态界面还是自适应界面时如何根据学习时间尺度进行发展。我们表明,可以直接利用这个新颖的框架来轻松地模拟各种交互场景,以促进对导致关节系统最佳学习动态的参数的探索,并为人机的优越性提供经验证据。共同适应用户适应。当用户学习操作静态界面和自适应界面时,这项工作量化了系统如何根据学习时间尺度进行演化。我们表明,可以直接利用这个新颖的框架来轻松地模拟各种交互场景,以促进对导致关节系统最佳学习动态的参数的探索,并为人机的优越性提供经验证据。共同适应用户适应。当用户学习操作静态界面和自适应界面时,这项工作量化了系统如何根据学习时间尺度进行演化。我们表明,可以直接利用这个新颖的框架来轻松地模拟各种交互场景,以促进对导致关节系统最佳学习动态的参数的探索,并为人机的优越性提供经验证据。共同适应用户适应。
更新日期:2021-03-22
down
wechat
bug