当前位置: X-MOL 学术Laser Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Resonant effect of the ultrarelativistic electron–positron pair production by gamma quanta in the field of a nucleus and a pulsed light wave
Laser Physics ( IF 1.2 ) Pub Date : 2021-03-08 , DOI: 10.1088/1555-6611/abe718
Sergei P Roshchupkin , Nikita R Larin , Victor V Dubov

Resonant electron–positron pair production by a high-energy gamma quantum ${\omega _i} \gtrsim {10^2}\:{\mathrm{GeV}}$ in the field of a nucleus and a quasi-monochromatic laser wave with the intensities $I \lesssim {10^{16}}$${10^{17}}\ {{\mathrm{W}}\,{\mathrm{cm}}^{-2}}$ was theoretically studied. Under the resonant condition, an intermediate virtual electron (positron) in the laser field becomes a real particle. Due to this fact, the initial process of the second order in the fine structure constant of a laser field effectively reduces into the two successive processes of the first order: the laser-stimulated Breit–Wheeler process and the laser-assisted process of an intermediate electron (positron) scattering by a nucleus. It is shown that there is a threshold energy for the initial gamma quantum, which significantly depends on the number of absorbed wave photons. At the resonance, the electron–positron pair energies are determined by the outgoing angle between the momenta of the initial gamma quantum and the positron (for the channel A) or the electron (for the channel B). The differential cross-sections for the first few resonances with simultaneous registration of the energy and the outgoing angle of the positron or the electron were obtained. For the initial gamma quantum energy ${\omega _i} = 125\;{\mathrm{GeV}}$ the resonant electron–positron pair energies for the case of the first three resonances can be measured with a very high magnitude of the differential cross-section: from ∼1013 for the first resonance to ∼108 (in the units of $\alpha {Z^2}r_e^2$) for the third resonance.



中文翻译:

伽马量子在原子核和脉冲光波场中产生超相对论电子-正电子对的共振效应

${\omega _i} \gtrsim {10^2}\:{\mathrm{GeV}}$核场中高能伽马量子和准单色激光波产生共振电子 - 正电子对,强度为$I \lesssim {10^{16}}$-${10^{17}}\ {{\mathrm{W}}\,{\mathrm{cm}}^{-2}}$进行了理论研究。在共振条件下,激光场中的中间虚电子(正电子)变成实粒子。由于这一事实,激光场精细结构常数的二阶初始过程有效地简化为两个连续的一阶过程:激光刺激的 Breit-Wheeler 过程和中间体的激光辅助过程。由原子核散射的电子(正电子)。结果表明,初始伽马量子存在阈值能量,该阈值能量显着取决于吸收波光子的数量。在共振时,电子-正电子对能量由初始伽马量子的动量与正电子(对于通道 A)或电子(对于通道 B)之间的出射角决定。获得了前几次共振的微分截面,同时记录了正电子或电子的能量和出射角。对于初始伽马量子能量${\omega _i} = 125\;{\mathrm{GeV}}$对于前三个共振的情况,共振电子 - 正电子对的能量可以用非常高的微分截面量级来测量:从第一次共振的~ 10 13到第一次共振的~ 10 8(以 为单位$\alpha {Z^2}r_e^2$)第三共振。

更新日期:2021-03-08
down
wechat
bug