当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluid–structure coupled simulation of ignition transient in a dual pulse motor using overset grid method
Acta Astronautica ( IF 3.5 ) Pub Date : 2021-03-19 , DOI: 10.1016/j.actaastro.2021.03.008
Yingkun Li , Xiong Chen , Honggang Cheng , Zemin Zhao

In this paper, the second pulse ignition transient in a dual pulse solid rocket motor with elastomeric barrier pulse separation device has been conducted numerically. An in-house code has been developed to solve governing equations for unsteady compressible flow, heat conduction and structural dynamic. The solid propellant ignition and burning numerical models have been added. The fluid structure interaction is implemented by using the conventional serial staggered algorithm. The large deformation and expansion of the elastomeric barrier are addressed by the dynamic overset grid technology. The accuracy of the numerical method is validated by the experimental cases. Then, the detailed flow field development, pressure evolution, flame propagation characteristics in the combustion chamber, and the structural response of elastomeric barrier are analyzed carefully. The rupture-time and rupture-pressure of the elastomeric barrier are also obtained. The numerical results show that the elastomeric barrier deformation presents a small displacement at the front part and a large displacement at the rear section. The interaction of the compression waves and expansion waves from the convergent portion of the nozzle and from the motor head-end, as well as the supersonic annular jet flow in the combustion chamber, can induce obvious pressure rises with fluctuations and spikes. The first pulse free volume has a significant effect on the time to reach a steady state.



中文翻译:

双脉冲电动机点火过渡瞬态的流固耦合模拟

在本文中,对具有弹性壁垒脉冲分离装置的双脉冲固体火箭发动机中的第二脉冲点火瞬态进行了数值模拟。内部代码已开发出来,用于求解不稳定的可压缩流,热传导和结构动力学的控制方程式。增加了固体推进剂点火和燃烧的数值模型。流体结构的相互作用是通过使用常规的串行交错算法来实现的。弹性隔层的大变形和膨胀可以通过动态过冲栅格技术解决。实验实例验证了数值方法的准确性。然后,详细介绍了流场的发展,压力的演变,燃烧室内火焰的传播特性,并仔细分析了弹性体阻隔层的结构响应。还获得了弹性体屏障的破裂时间和破裂压力。数值结果表明,弹性体阻隔变形在前部表现出较小的位移,而在后部表现出较大的位移。来自喷嘴的会聚部分和来自电机前端的压缩波和膨胀波的相互作用,以及燃烧室内的超音速环形射流,都会引起明显的压力升高,并产生波动和峰值。第一个无脉冲音量对达到稳定状态的时间有重大影响。数值结果表明,弹性体阻隔变形在前部表现出较小的位移,而在后部表现出较大的位移。来自喷嘴的会聚部分和来自电机前端的压缩波和膨胀波的相互作用,以及燃烧室内的超音速环形射流,都会引起明显的压力升高,并产生波动和峰值。第一个无脉冲音量对达到稳定状态的时间有重大影响。数值结果表明,弹性体阻隔变形在前部表现出较小的位移,而在后部表现出较大的位移。来自喷嘴的会聚部分和来自电机前端的压缩波和膨胀波的相互作用,以及燃烧室内的超音速环形射流,都会引起明显的压力升高,并产生波动和峰值。第一个无脉冲音量对达到稳定状态的时间有重大影响。

更新日期:2021-04-01
down
wechat
bug