当前位置: X-MOL 学术Front. Comput. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of Several Classes of Voltage-Gated Ion Channel Conductances on Gamma and Theta Oscillations in a Hippocampal Microcircuit Model
Frontiers in Computational Neuroscience ( IF 3.2 ) Pub Date : 2021-03-08 , DOI: 10.3389/fncom.2021.630271
Chris Olteanu , Forough Habibollahi , Chris French

Gamma and theta oscillations have been functionally associated with cognitive processes such as learning and memory. Synaptic conductances play an important role in the generation of intrinsic network rhythmicity, but few studies have examined the effects of voltage-gated ion channels (VGICs) on these rhythms. In this report, we have used a pyramidal-interneuron-gamma (PING) network consisting of excitatory pyramidal cells and two types of inhibitory interneurons. We have constructed a conductance-based neural network incorporating a persistent sodium current (INaP), a delayed rectifier potassium current (IKDR), a hyper-polarizing potassium current (IA), and a hyperpolarization-activated current (IH). We have investigated the effects of several conductances on network theta and gamma frequency oscillations. Variation of all conductances of interest changed network rhythmicity. Theta power was altered by all conductances tested. Gamma rhythmogenesis was dependent on IA and IH. The IKDR currents in excitatory pyramidal cells as well as both types of inhibitory interneurons were essential for theta rhythmogenesis and altered gamma rhythm properties. Increasing INaP suppressed both gamma and theta rhythms. Addition of noise did not alter these patterns. Our findings suggest that VGICs strongly affect brain network rhythms. Further investigations in vivo will be of great interest, including potential effects on neural function and cognition.

中文翻译:

几类电压门控离子通道电导对海马微电路模型中γ和θ振荡的影响

伽马和θ振荡已与认知过程(例如学习和记忆)在功能上相关联。突触电导在内在网络节律的产生中起重要作用,但是很少有研究检查电压门控离子通道(VGIC)对这些节律的影响。在本报告中,我们使用了由兴奋性锥体细胞和两种抑制性中间神经元组成的金字塔中间神经元(PING)网络。我们构建了一个基于电导的神经网络,其中包含持续钠电流(INaP),延迟整流器钾电流(IKDR),超极化钾电流(IA)和超极化激活电流(IH)。我们已经研究了几种电导对网络theta和伽马频率振荡的影响。所有感兴趣的电导的变化都会改变网络的节奏。所有测试的电导都改变了Theta功率。伽玛节律依赖于IA和IH。兴奋性锥体细胞中的IKDR电流以及两种类型的抑制性中间神经元对于theta节律的发生和伽马节律特性的改变都是必不可少的。INaP的增加会抑制γ和theta节律。噪声的添加并没有改变这些模式。我们的发现表明,VGIC强烈影响大脑的网络节律。体内的进一步研究将引起极大的兴趣,包括对神经功能和认知的潜在影响。兴奋性锥体细胞中的IKDR电流以及两种类型的抑制性中间神经元对于theta节律的发生和伽马节律特性的改变都是必不可少的。INaP的增加会抑制γ和theta节律。噪声的添加并没有改变这些模式。我们的发现表明,VGIC强烈影响大脑的网络节律。体内的进一步研究将引起极大的兴趣,包括对神经功能和认知的潜在影响。兴奋性锥体细胞中的IKDR电流以及两种类型的抑制性中间神经元对于theta节律的发生和伽马节律特性的改变都是必不可少的。INaP的增加会抑制γ和theta节律。噪声的添加并没有改变这些模式。我们的发现表明,VGIC强烈影响大脑的网络节律。体内的进一步研究将引起极大的兴趣,包括对神经功能和认知的潜在影响。
更新日期:2021-03-17
down
wechat
bug