当前位置: X-MOL 学术Fract. Calc. Appl. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the asymptotics of wright functions of the second kind
Fractional Calculus and Applied Analysis ( IF 3 ) Pub Date : 2021-02-01 , DOI: 10.1515/fca-2021-0003
Richard B. Paris 1 , Armando Consiglio 2 , Francesco Mainardi 3
Affiliation  

The asymptotic expansions of the Wright functions of the second kind, introduced by Mainardi [see Appendix F of his book Fractional Calculus and Waves in Linear Viscoelasticity (2010)], Fσ(x)=∑n=0∞(−x)nn!Γ(−nσ) , Mσ(x)=∑n=0∞(−x)nn!Γ(−nσ+1−σ) (0<σ<1)$$F_\sigma(x)=\sum\limits_{n=0}^\infty \frac{(-x)^n}{n! {\mathrm{\Gamma}}(-n\sigma)}~,\quad M_\sigma(x)=\sum\limits_{n=0}^\infty \frac{(-x)^n}{n! {\mathrm{\Gamma}}(-n\sigma+1-\sigma)}\quad(0 \lt \sigma \lt 1) $$ for x → ± ∞ are presented. The situation corresponding to the limit σ → 1 − is considered, where M σ ( x ) approaches the Dirac delta function δ ( x − 1). Numerical results are given to demonstrate the accuracy of the expansions derived in the paper, together with graphical illustrations that reveal the transition to a Dirac delta function as σ → 1 − .

中文翻译:

关于第二种赖特函数的渐近性

Mainardi引入了第二种Wright函数的渐近展开式(请参见他的书《线性粘弹性的分数微积分和波动》(2010)的附录F),Fσ(x)= ∑n =0∞(-x)nn! Γ(-nσ),Mσ(x)= ∑n =0∞(-x)nn!Γ(-nσ+1-σ)(0 <σ<1)$$ F_ \ sigma(x)= \ sum \ limit_ {n = 0} ^ \ infty \ frac {(-x)^ n} {n!{\ mathrm {\ Gamma}}(-n \ sigma)}〜,\ quad M_ \ sigma(x)= \ sum \ limits_ {n = 0} ^ \ infty \ frac {(-x)^ n} {n !给出了{\ mathrm {\ Gamma}}(-n \ sigma + 1- \ sigma)} \ quad(0 \ lt \ sigma \ lt 1)$$ x→±∞。考虑对应于极限σ→1-的情况,其中Mσ(x)接近狄拉克δ函数δ(x-1)。给出了数值结果以证明本文导出的展开的准确性,并给出了图解图,这些图表明了向Diracδ函数的转换为σ→1-。
更新日期:2021-03-16
down
wechat
bug