当前位置: X-MOL 学术J. Plasma Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of magnetic perturbations and radiation on the runaway avalanche
Journal of Plasma Physics ( IF 2.5 ) Pub Date : 2021-03-15 , DOI: 10.1017/s0022377820001592
P. Svensson , O. Embreus , S. L. Newton , K. Särkimäki , O. Vallhagen , T. Fülöp

The electron runaway phenomenon in plasmas depends sensitively on the momentum- space dynamics. However, efficient simulation of the global evolution of systems involving runaway electrons typically requires a reduced fluid description. This is needed, for example, in the design of essential runaway mitigation methods for tokamaks. In this paper, we present a method to include the effect of momentum-dependent spatial transport in the runaway avalanche growth rate. We quantify the reduction of the growth rate in the presence of electron diffusion in stochastic magnetic fields and show that the spatial transport can raise the effective critical electric field. Using a perturbative approach, we derive a set of equations that allows treatment of the effect of spatial transport on runaway dynamics in the presence of radial variation in plasma parameters. This is then used to demonstrate the effect of spatial transport in current quench simulations for ITER-like plasmas with massive material injection. We find that in scenarios with sufficiently slow current quench, owing to moderate impurity and deuterium injection, the presence of magnetic perturbations reduces the final runaway current considerably. Perturbations localised at the edge are not effective in suppressing the runaways, unless the runaway generation is off-axis, in which case they may lead to formation of strong current sheets at the interface of the confined and perturbed regions.

中文翻译:

磁扰动和辐射对雪崩失控的影响

等离子体中的电子失控现象敏感地依赖于动量空间动力学。然而,对涉及失控电子的系统的全局演化进行有效模拟通常需要简化流体描述。例如,在设计托卡马克的基本失控缓解方法时需要这样做。在本文中,我们提出了一种方法,将动量相关的空间传输对失控雪崩增长率的影响包括在内。我们量化了随机磁场中存在电子扩散时生长速率的降低,并表明空间传输可以提高有效临界电场。使用微扰方法,我们推导出一组方程,允许在等离子体参数存在径向变化的情况下处理空间传输对失控动力学的影响。然后,这被用来证明空间传输在电流淬火模拟中对具有大量材料注入的类 ITER 等离子体的影响。我们发现,在电流熄灭足够慢的情况下,由于适度的杂质和氘注入,磁扰动的存在大大降低了最终的失控电流。位于边缘的扰动在抑制失控方面无效,除非失控产生是离轴的,在这种情况下,它们可能导致在受限区域和扰动区域的界面处形成强电流片。然后,这被用来证明空间传输在电流淬火模拟中对具有大量材料注入的类 ITER 等离子体的影响。我们发现,在电流熄灭足够慢的情况下,由于适度的杂质和氘注入,磁扰动的存在大大降低了最终的失控电流。位于边缘的扰动在抑制失控方面无效,除非失控产生是离轴的,在这种情况下,它们可能导致在受限区域和扰动区域的界面处形成强电流片。然后,这被用来证明空间传输在电流淬火模拟中对具有大量材料注入的类 ITER 等离子体的影响。我们发现,在电流熄灭足够慢的情况下,由于适度的杂质和氘注入,磁扰动的存在大大降低了最终的失控电流。位于边缘的扰动在抑制失控方面无效,除非失控产生是离轴的,在这种情况下,它们可能导致在受限区域和扰动区域的界面处形成强电流片。磁扰动的存在大大降低了最终的失控电流。位于边缘的扰动在抑制失控方面无效,除非失控产生是离轴的,在这种情况下,它们可能导致在受限区域和扰动区域的界面处形成强电流片。磁扰动的存在大大降低了最终的失控电流。位于边缘的扰动在抑制失控方面无效,除非失控产生是离轴的,在这种情况下,它们可能导致在受限区域和扰动区域的界面处形成强电流片。
更新日期:2021-03-15
down
wechat
bug