当前位置: X-MOL 学术New Carbon Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries
New Carbon Materials ( IF 5.7 ) Pub Date : 2021-03-15 , DOI: 10.1016/s1872-5805(21)60007-0
Xiao-qin Cheng , Hui-jun Li , Zhen-xin Zhao , Yong-zhen Wang , Xiao-min Wang

Raman spectroscopy is a fast, non-destructive and high-resolution characterization tool based on laser physics that can be applied to a wide range of materials science problems. It has proven to be an effective tool in studying phase transitions induced by variables such as temperature, pressure or electrochemical reactions. In-situ Raman spectroscopy can be used to track any microstructural changes of the electrode materials and interface reactions in alkali metal-ion batteries during charging and discharging. Carbon materials have become the most widely used anode materials for lithium-ion batteries because of their good electrochemical reversibility, excellent stability, low electrochemical charge/discharge potential platform, and low cost. The use of in-situ Raman spectroscopy in understanding the reactions occurring in alkali metal-ion batteries using carbon anode materials is summarized with a focus on the energy storage mechanism in Li+/Na+/K+ ion batteries using carbon materials such as graphite and hard carbon as the anode materials. The effects of size, stress, doping, and the solvation-assisted co-intercalation of Li+/Na+/K+ ions on the energy storage behavior in alkali metal-ion batteries are analyzed. Based on the strength and weakness of in-situ Raman spectroscopy, its combination with AFM, in situ XRD and other high-resolution in situ technologies is used to reveal the energy storage mechanisms.



中文翻译:

使用原位拉曼光谱研究碳材料作为碱金属离子电池的阳极

拉曼光谱仪是一种基于激光物理学的快速,无损,高分辨率的表征工具,可应用于各种材料科学问题。它已被证明是研究由温度,压力或电化学反应等变量引起的相变的有效工具。原位拉曼光谱可用于追踪在充电和放电期间碱金属离子电池中电极材料和界面反应的任何微结构变化。碳材料因其良好的电化学可逆性,出色的稳定性,较低的电化学充电/放电电势平台和低成本而成为锂离子电池使用最广泛的负极材料。+ / Na + / K +离子电池,使用石墨和硬碳等碳材料作为负极材料。分析了Li + / Na + / K +离子的大小,应力,掺杂和溶剂化辅助共嵌入对碱金属离子电池储能性能的影响。基于原位拉曼光谱法的优缺点,将其与原子力显微镜,原位XRD和其他高分辨率原位技术相结合,揭示了能量储存机理。

更新日期:2021-03-15
down
wechat
bug