当前位置: X-MOL 学术Exp. Astron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Ariel Instrument Control Unit
Experimental Astronomy ( IF 3 ) Pub Date : 2021-03-11 , DOI: 10.1007/s10686-020-09694-5
M. Focardi , A. M. Di Giorgio , L. Naponiello , V. Noce , G. Preti , A. Lorenzani , A. Tozzi , C. Del Vecchio , E. Galli , M. Farina , G. Morgante , A. Scippa , G. Redigonda , G. Giusi , J. Amiaux , C. Cara , M. Berthe , R. Ottensamer , P. Eccleston , A. Caldwell , G. Bishop , L. Desjonqueres , R. Drummond , D. Brienza , E. Pace

Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey mission (Tinetti 2019; Puig et al. 2018; Pascale et al. 2018), has been selected in March 2018 by ESA for the fourth medium-class mission (M4) launch opportunity of the Cosmic Vision Program, with an expected lift off in late 2028. It is the first mission dedicated to measuring the chemical composition and thermal structures of the atmospheres of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of our own Solar System. Its Payload (P/L) (Eccleston and Tinetti 2018; Eccleston et al. 2017; Middleton et al. 2019), has been designed to perform transit spectroscopy from space during primary and secondary planetary eclipses in order to achieve a large unbiased survey concerning the nature of exoplanets atmospheres and their interiors, to determine the key factors affecting the formation and evolution of planetary systems (Tinetti et al. 2017, 2018). Ariel will observe hundreds of warm and hot transiting gas giants, Neptunes and super-Earths around a wide range of host star types, targeting planets hotter than \(\sim \)600 K to take advantage of their well-mixed atmospheres. It will exploit primary and secondary transit spectroscopy in the 1.10 to 7.80 μm spectral range and broad-band photometry in the optical (0.50 - 0.80 μm) and Near IR (0.80 - 1.10 μm) . One of the two instruments of the Ariel Payload is the Fine Guidance System (FGS), including three photometric channels (two used for guiding as well as science) between 0.5-1.1 μm plus a low resolution NIR spectrometer for 1.1-1.95 μm range. Along with FGS an IR Spectrometer (AIRS) (Amiaux et al. 2017) is foreseen, providing low-resolution spectroscopy in two IR channels: Channel 0 (CH0) for the 1.95 − 3.90 μm band and Channel 1 (CH1) for the 3.90 − 7.80 μm range. Finally, an Active Cooler System (ACS) including a Ne Joule-Thomson cooler is adopted to provide active cooling capability to the AIRS detectors working at cryogenic temperatures. AIRS is located at the intermediate focal plane of the telescope and common optical system and it hosts two HgCdTe-based hybrid IR detectors and two cold front-end electronics (CFEE) for detectors control and readout. Each CFEE is driven by a Detector Control Unit (DCU) part of AIRS but hosted within and managed by the Instrument Control Unit (ICU) of the Payload (Focardi et al. 2018). ICU is a warm unit residing into the S/C Service Module (SVM) and it is based on a cold redundant configuration involving the Power Supply Unit (PSU) and the Commanding and Data Processing Unit (CDPU) boards; both DCUs are instead cross-strapped and can be managed by the nominal or the redundant (PSU+CDPU) chain. ICU is in charge of AIRS management, collecting scientific and housekeeping (HK) telemetries from the spectrometer and HK from the telescope (temperatures readings), the P/L Optical Bench (OB) and other Subsystems (SS), thanks to a warm slave unit (TCU, Telescope Control Unit) interfaced to the ICU. Science and HK telemetries are then forwarded to the S/C, for temporary storage, before sending them to Ground. Here we describe the status of the ICU design at the end of B1 Phase, prior to the Mission Adoption Review (MAR) by ESA, with some still open architectural choices to be addressed and finalised once selected the ICU industrial Prime contractor.



中文翻译:

Ariel仪器控制单元

大气遥感红外系外行星大任务任务Ariel(Tinetti 2019; Puig等人2018; Pascale等人2018)已于2018年3月被欧空局选为第四次中型任务(M4)发射机会宇宙视觉计划的研究人员,预计将在2028年下半年发射升空。这是第一个致力于测量数百个过流系外行星大气化学成分和热结构的任务,从而使行星科学远远超出了我们太阳系的范围。其有效载荷(P / L)(Eccleston and Tinetti 2018; Eccleston et al.2017; Middleton et al.2019)的设计目的是在一次和二次行星蚀期间从太空进行过境光谱分析,从而实现有关系外行星大气的性质及其内部,确定影响行星系统形成和演化的关键因素(Tinetti et al.2017,2018)。阿里尔(Ariel)将观测数百个围绕各种主恒星类型的热和热过境天然气巨头,海王星和超地球,其目标是比\(\ sim \) 600 K以充分利用它们的混合气氛。这将利用初级和次级过境光谱在1.10至7.80 μ中号在光学光谱范围和宽频带的测光(0.50 - 0.80 μ)和近IR(0.80 - 1.10 μ)。一个有效载荷沙龙的两种仪器的是精细指导系统(FGS),其中包括三个光度信道(用于引导以及科学2)0.5-1.1之间μ加上1.1-1.95低分辨率NIR分光计μ范围。预计将与FGS一起使用IR光谱仪(AIRS)(Amiaux等人,2017),在两个IR通道中提供低分辨率光谱:Ç ħ一个Ñ Ñ ë0(ç ħ 0 3.90 -为对1.95)μ频带和Ç ħ一个Ñ Ñ ë1(c ^ H ^ 1 7.80 -为对3.90)μ范围。最后,采用了包括Ne Joule-Thomson冷却器的主动冷却器系统(ACS),为在低温下工作的AIRS检测器提供主动冷却能力。AIRS位于望远镜和普通光学系统的中间焦平面,它装有两个基于HgCdTe的混合红外探测器和两个用于探测器控制和读出的冷前端电子设备(CFEE)。每个CFEE由AIRS的探测器控制单元(DCU)驱动,但由有效载荷的仪器控制单元(ICU)托管并由其管理(Focardi et al.2018)。ICU是驻留在S / C服务模块(SVM)中的热单元,它基于冷冗余配置,涉及电源单元(PSU)和命令与数据处理单元(CDPU)板;相反,两个DCU都是交叉交叉的,可以通过标称或冗余(PSU + CDPU)链进行管理。ICU负责AIRS管理,得益于温暖的从站,它从光谱仪收集科学和内务(HK)遥测数据,并从望远镜(温度读数),P / L光学工作台(OB)和其他子系统(SS)收集HK数据。单元(TCU,望远镜控制单元)连接到ICU。然后将科学和HK遥测技术转发到S / C,进行临时存储,然后再发送到地面。在这里,我们描述了ESA进行任务采用评估(MAR)之前,B1阶段结束时ICU设计的状态,一旦选择了ICU工业主承包商,一些尚待解决的架构选择将要解决并最终确定。得益于温暖的从属单元(TCU,望远镜控制单元),可以从光谱仪收集科学和客房服务(HK)的遥测数据,并从望远镜(温度读数),HK / P / L光学工作台(OB)和其他子系统(SS)收集数据。连接到ICU。然后将科学和HK遥测技术转发到S / C,进行临时存储,然后再发送到地面。在这里,我们描述了ESA进行任务采用评估(MAR)之前,B1阶段结束时ICU设计的状态,一旦选择了ICU工业主承包商,一些尚待解决的架构选择将要解决并最终确定。得益于温暖的从属单元(TCU,望远镜控制单元),从光谱仪收集科学和内务(HK)遥测数据,从望远镜收集HK(温度读数),P / L光学工作台(OB)和其他子系统(SS)连接到ICU。然后将科学和HK遥测技术转发到S / C,进行临时存储,然后再发送到地面。在这里,我们描述了ESA进行任务采用评估(MAR)之前,B1阶段结束时ICU设计的状态,一旦选择了ICU工业主承包商,一些尚待解决的架构选择将要解决并最终确定。然后将科学和HK遥测技术转发到S / C,进行临时存储,然后再发送到地面。在这里,我们描述了ESA进行任务采用评估(MAR)之前,B1阶段结束时ICU设计的状态,一旦选择了ICU工业主要承包商,一些尚待解决的架构选择将得到解决和确定。然后将科学和HK遥测技术转发到S / C,进行临时存储,然后再发送到地面。在这里,我们描述了ESA进行任务采用评估(MAR)之前,B1阶段结束时ICU设计的状态,一旦选择了ICU工业主承包商,一些尚待解决的架构选择将要解决并最终确定。

更新日期:2021-03-11
down
wechat
bug