当前位置: X-MOL 学术SIAM J. Sci. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of Adaptive Two-Grid Finite Element Algorithms for Linear and Nonlinear Problems
SIAM Journal on Scientific Computing ( IF 3.1 ) Pub Date : 2021-03-09 , DOI: 10.1137/19m1285615
Yukun Li , Yi Zhang

SIAM Journal on Scientific Computing, Volume 43, Issue 2, Page A908-A928, January 2021.
This paper proposes some efficient and accurate adaptive two-grid (ATG) finite element algorithms for linear and nonlinear PDEs. The main idea of these algorithms is to utilize the solutions on the $k$th-level adaptive meshes to find the solutions on the $(k+1)$th-level adaptive meshes which are constructed by performing adaptive element bisections on the $k$th-level adaptive meshes. These algorithms transform nonsymmetric positive definite (non-SPD) PDEs (resp., nonlinear PDEs) into symmetric positive definite (SPD) PDEs (resp., linear PDEs). The proposed algorithms are both accurate and efficient due to the following advantages: They do not need to solve the nonsymmetric or nonlinear systems; the degrees of freedom are very small, they are easily implemented, and the interpolation errors are very small. Next, this paper constructs residual-type a posteriori error estimators which are shown to be reliable and efficient. The key ingredient in proving the efficiency is to establish an upper bound of the oscillation terms, which may not be higher-order terms due to the low regularity of the numerical solution. Furthermore, the convergence of the algorithms is proved when bisection is used for the mesh refinements. Finally, numerical experiments are provided to verify the accuracy and efficiency of the ATG finite element algorithms compared to regular adaptive finite element algorithms and two-grid finite element algorithms [J. Xu, SIAM J. Numer. Anal., 33 (1996), pp. 1759--1777].


中文翻译:

线性和非线性问题的自适应两网格有限元算法分析

SIAM科学计算杂志,第43卷,第2期,第A908-A928页,2021年1月。
本文针对线性和非线性PDE提出了一些高效,准确的自适应两网格(ATG)有限元算法。这些算法的主要思想是利用$ k $级自适应网格上的解来找到$(k + 1)$级自适应网格上的解,该解是通过对$ k执行自适应元素二等分而构造的第k级自适应网格。这些算法将非对称正定(非SPD)PDE(分别为非线性PDE)转换为对称正定(SPD)PDE(分别为线性PDE)。由于以下优点,所提出的算法既准确又有效:它们不需要求解非对称或非线性系统;自由度很小,易于实现,插值误差也很小。下一个,本文构造了残差型后验误差估计器,该估计器被证明是可靠且有效的。证明效率的关键因素是确定振荡项的上限,由于数值解的规则性较低,因此它可能不是高阶项。此外,当将二等分用于网格细化时,证明了算法的收敛性。最后,与常规的自适应有限元算法和两网格有限元算法相比,提供了数值实验来验证ATG有限元算法的准确性和效率[J.徐,SIAM J. Numer。Anal。,33(1996),pp。1759--1777]。由于数值解的规则性较低,因此可能不是高阶项。此外,当将二等分用于网格细化时,证明了算法的收敛性。最后,与常规的自适应有限元算法和两网格有限元算法相比,提供了数值实验来验证ATG有限元算法的准确性和效率[J.徐,SIAM J. Numer。Anal。,33(1996),pp。1759--1777]。由于数值解的规则性较低,因此可能不是高阶项。此外,当将二等分用于网格细化时,证明了算法的收敛性。最后,与常规的自适应有限元算法和两网格有限元算法相比,提供了数值实验来验证ATG有限元算法的准确性和效率[J.徐,SIAM J. Numer。Anal。,33(1996),pp。1759--1777]。与常规的自适应有限元算法和两网格有限元算法相比,提供了数值实验来验证ATG有限元算法的准确性和效率[J.徐,SIAM J. Numer。Anal。,33(1996),pp。1759--1777]。与常规的自适应有限元算法和两网格有限元算法相比,提供了数值实验来验证ATG有限元算法的准确性和效率[J.徐,SIAM J. Numer。Anal。,33(1996),pp。1759--1777]。
更新日期:2021-03-10
down
wechat
bug