当前位置: X-MOL 学术Int. J. Appl. Electromagn. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical analysis and experimental verification of magnetic fluid sealing for air cylinder in Aerospace Engineering
International Journal of Applied Electromagnetics and Mechanics ( IF 0.6 ) Pub Date : 2021-03-09 , DOI: 10.3233/jae-201572
Chen Fan 1, 2 , Zhang Chongfeng 1, 2 , Yang Xiaolong 3
Affiliation  

In order to solve the problem of short service life (2 months) and zero leakage of air cylinder in aerospace engineering, this paper innovatively designs a magnetic fluid sealing device of air cylinder in aerospace engineering through magnetic circuit analysis and magnetic fluid sealing theory. Themagnetic field finite element method is used to calculate the magnetic field distribution in the sealing gap under different key parameters such as the number of pole teeth, the height of the radial sealing gap, the thickness of the permanent magnet, the slot width, the ratio of pole piece height to shaft. And numerical analysis of the number of pole teeth, the radial sealing gap height, permanent magnet thickness, slot width, the ratio of pole piece height to shaft and other key parameters on the magnetic fluid sealing performance. Finally, the reliability of the reciprocating magnetic fluid sealing withstand voltage is verified by experimental methods. Research indicates. The pressure capabilities of magnetic fluid sealing is increasing with the increase of the number of pole teeth. The pressure capabilities of magnetic fluid sealing is decreasing with the increase of the radial sealing gap. The sealing withstand voltage increases first and then decreases with the increase of the thickness of the permanent magnet, and finally increases, and the value of the withstand voltage is the largest when the thickness of the permanent magnet is 7.8 mm. The sealing pressure capabilities increases as the slot width increases. The sealing withstand voltage increases first and then decreases as the ratio of pole piece height to shaft increases, and when the ratio of pole piece height to shaft is 0.8, the sealing withstand voltage reaches a maximum value. The pressure test finally reaches the pressure value of 6 MPa, which can meet the pressure value demand of medium pressure cylinder, indicating that the magnetic fluid sealing technology can effectively solve the leakage problem existing in the air cylinder technology of Aerospace Engineering, and improve the reliability and service life of the air cylinder.

中文翻译:

航空航天气缸磁流体密封的数值分析与实验验证

为了解决航空航天工程中气缸使用寿命短(2个月),零泄漏的问题,通过磁路分析和磁流体密封理论,创新性地设计了航空航天工程中的气缸磁流体密封装置。磁场有限元法用于计算不同关键参数(如极齿数,径向密封间隙的高度,永磁体的厚度,槽的宽度,比率)在不同关键参数下密封间隙中的磁场分布。极片高度与轴的距离。并对极齿数,径向密封间隙高度,永磁体厚度,槽宽,极靴高度与轴之比以及影响磁流体密封性能的其他关键参数进行了数值分析。最后,通过实验方法验证了往复式磁性流体密封耐压的可靠性。研究表明。磁流体密封的压力能力随着极齿数量的增加而增加。磁性流体密封的压力能力随着径向密封间隙的增加而降低。密封耐压随着永磁体的厚度增加而先增加然后减小,最后增加,并且当永磁体的厚度为7.8mm时,耐压的值最大。密封压力的能力随着槽宽度的增加而增加。随着极靴高度与轴的比值增加,密封耐压首先增加,然后减小,当极靴高度与轴之比为0.8时,密封耐压达到最大值。压力测试最终达到了6 MPa的压力值,可以满足中压气缸的压力值需求,表明磁流体密封技术可以有效解决航空航天工程气缸技术中存在的泄漏问题,并提高密封性。气缸的可靠性和使用寿命。
更新日期:2021-03-09
down
wechat
bug