当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Time-expanded phase-sensitive optical time-domain reflectometry
Light: Science & Applications ( IF 19.4 ) Pub Date : 2021-03-09 , DOI: 10.1038/s41377-021-00490-0
Miguel Soriano-Amat , Hugo F. Martins , Vicente Durán , Luis Costa , Sonia Martin-Lopez , Miguel Gonzalez-Herraez , María R. Fernández-Ruiz

Phase-sensitive optical time-domain reflectometry (ΦOTDR) is a well-established technique that provides spatio-temporal measurements of an environmental variable in real time. This unique capability is being leveraged in an ever-increasing number of applications, from energy transportation or civil security to seismology. To date, a wide number of different approaches have been implemented, providing a plethora of options in terms of performance (resolution, acquisition bandwidth, sensitivity or range). However, to achieve high spatial resolutions, detection bandwidths in the GHz range are typically required, substantially increasing the system cost and complexity. Here, we present a novel ΦOTDR approach that allows a customized time expansion of the received optical traces. Hence, the presented technique reaches cm-scale spatial resolutions over 1 km while requiring a remarkably low detection bandwidth in the MHz regime. This approach relies on the use of dual-comb spectrometry to interrogate the fibre and sample the backscattered light. Random phase-spectral coding is applied to the employed combs to maximize the signal-to-noise ratio of the sensing scheme. A comparison of the proposed method with alternative approaches aimed at similar operation features is provided, along with a thorough analysis of the new trade-offs. Our results demonstrate a radically novel high-resolution ΦOTDR scheme, which could promote new applications in metrology, borehole monitoring or aerospace.



中文翻译:

时间扩展相敏光学时域反射仪

相敏光学时域反射仪(ΦOTDR)是一项成熟的技术,可实时提供环境变量的时空测量。从能源运输或民防到地震,越来越多的应用程序都利用了这种独特的功能。迄今为止,已经实现了多种不同的方法,从而在性能(分辨率,采集带宽,灵敏度或范围)方面提供了很多选择。但是,为了获得高空间分辨率,通常需要GHz范围内的检测带宽,从而大大增加了系统成本和复杂性。在这里,我们提出了一种新颖的ΦOTDR方法,该方法允许对接收到的光迹进行自定义的时间扩展。因此,所提出的技术可以在1 km上达到厘米级的空间分辨率,同时在MHz体制中需要非常低的检测带宽。这种方法依赖于使用双梳状光谱仪来探询光纤并采样反向散射光。将随机相位频谱编码应用于所采用的梳,以使感测方案的信噪比最大化。将提出的方法与针对类似操作功能的替代方法进行了比较,并对新的折衷方法进行了全面分析。我们的结果证明了一种全新的高分辨率ΦOTDR方案,该方案可以促进计量学,井眼监测或航空航天领域的新应用。这种方法依赖于使用双梳状光谱仪来探询光纤并采样反向散射光。将随机相位频谱编码应用于所采用的梳,以使感测方案的信噪比最大化。将提出的方法与针对类似操作功能的替代方法进行了比较,并对新的折衷方法进行了全面分析。我们的结果证明了一种全新的高分辨率ΦOTDR方案,该方案可以促进计量学,井眼监测或航空航天领域的新应用。这种方法依赖于使用双梳状光谱仪来探询光纤并采样反向散射光。将随机相位频谱编码应用于所采用的梳,以使感测方案的信噪比最大化。将提出的方法与针对类似操作功能的替代方法进行了比较,并对新的折衷方法进行了全面分析。我们的结果证明了一种全新的高分辨率ΦOTDR方案,该方案可以促进计量学,井眼监测或航空航天领域的新应用。以及对新折衷方案的透彻分析。我们的结果证明了一种全新的高分辨率ΦOTDR方案,该方案可以促进计量学,井眼监测或航空航天领域的新应用。以及对新折衷方案的透彻分析。我们的结果证明了一种全新的高分辨率ΦOTDR方案,该方案可以促进计量学,井眼监测或航空航天领域的新应用。

更新日期:2021-03-09
down
wechat
bug