当前位置: X-MOL 学术Isa Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neuro-adaptive fast integral terminal sliding mode control design with variable gain robust exact differentiator for under-actuated quadcopter UAV
ISA Transactions ( IF 7.3 ) Pub Date : 2021-03-09 , DOI: 10.1016/j.isatra.2021.02.045
Safeer Ullah 1 , Qudrat Khan 2 , Adeel Mehmood 1 , Syed Abdul Mannan Kirmani 2 , Omar Mechali 3
Affiliation  

In this paper, a robust global fast terminal attractor based full flight trajectory tracking control law has been developed for the available regular form which is operated under matched uncertainties. Based on the hierarchical control principle, the aforesaid model is first subdivided into two subsystems, i.e., a fully-actuated subsystem and an under-actuated subsystem. In other words, the under-actuated subsystem is further transformed into a regular form whereby the under-actuated characteristics are decoupled in terms of control inputs. In the proposed design, the nonlinear drift terms, which certainly varies in full flight, are estimated via functional link neural networks to improve the performance of the controller in full flight. Besides, a variable gain robust exact differentiator (VG-RED) is designed to provide us with estimated flight velocities. It has consequently reduced the noise in system’s velocities and has mapped this controller as a practical one. The finite-time sliding mode enforcement and the states’ convergence are shown, for all flight loops, i.e., forward flight and backward flight, via the Lyapunov approach. All these claims are verified via numerical simulations and experimental implementation of the quadcopter system in a Matlab environment. For a more impressive presentation, the developed simulation results are compared with standard literature.



中文翻译:

具有可变增益鲁棒精确微分器的神经自适应快速积分终端滑模控制设计用于欠驱动四旋翼无人机

本文针对在匹配不确定性下运行的可用规则形式,开发了一种基于鲁棒全局快速终端吸引子的全飞行轨迹跟踪控制律。根据分层控制原理,首先将上述模型细分为两个子系统,即全驱动子系统和欠驱动子系统。换句话说,欠驱动子系统被进一步转换为常规形式,从而欠驱动特性在控制输入方面被解耦。在所提出的设计中,非线性漂移项(在全飞行中肯定会发生变化)通过功能链接神经网络进行估计,以提高控制器在全飞行中的性能。除了,可变增益稳健精确微分器(VG-RED)旨在为我们提供估计的飞行速度。因此,它降低了系统速度中的噪声,并将该控制器映射为实用控制器。通过 Lyapunov 方法,显示了所有飞行循环(即前向飞行和后向飞行)的有限时间滑模执行和状态收敛。所有这些声明都通过数值模拟和 Matlab 环境中四轴飞行器系统的实验实现来验证。为了更令人印象深刻的演示,将开发的模拟结果与标准文献进行了比较。对于所有的飞行循环,即前向飞行和后向飞行,通过 Lyapunov 方法。所有这些声明都通过数值模拟和 Matlab 环境中四轴飞行器系统的实验实现来验证。为了更令人印象深刻的演示,将开发的模拟结果与标准文献进行了比较。对于所有的飞行循环,即前向飞行和后向飞行,通过 Lyapunov 方法。所有这些声明都通过数值模拟和 Matlab 环境中四轴飞行器系统的实验实现来验证。为了更令人印象深刻的演示,将开发的模拟结果与标准文献进行了比较。

更新日期:2021-03-09
down
wechat
bug