当前位置: X-MOL 学术J. Rare Earths › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Upconversion hollow nanospheres CeF3 co-doped with Yb3+ and Tm3+ for photocatalytic nitrogen fixation
Journal of Rare Earths ( IF 4.9 ) Pub Date : 2021-03-09 , DOI: 10.1016/j.jre.2021.03.004
Minghui Zhong 1 , Zhendong Wang 1 , Da Dai 1 , Baozhu Yang 1 , Shixiang Zuo 1 , Chao Yao 1 , Fengqin Wu 1 , Xiazhang Li 1, 2
Affiliation  

Solar driven nitrogen (N2) fixation to synthesize ammonia is a potential alternative for the traditional Haber-Bosch approach to meeting industrial demand, but is largely hampered by the difficulties in the harvesting of solar energy and activating inert N2. In this work, hollow CeF3 nanospheres co-doped with activator Tm3+ and sensitizer Yb3+ (Yb3+:Tm3+:CeF3) were prepared by microwave hydrothermal method. The product was employed as a catalyst for photo-driven N2 fixation by adjusting the molar ratio of Ce3+:Yb3+:Tm3+. Results show that the porous hollow structure enhances the light-harvesting by physical scattering and reflection. In addition, heteroatom doping generates abundant fluorine vacancies (FV) which provide abundant active sites for adsorption and activation of N2. The sample with molar ratio of CeF3:Yb3+:Tm3+ at 178:20:2 demonstrates the highest utilization of solar energy attributed to the strongest upconversion capability of near-infrared (NIR) light to visible and ultraviolet (UV) light, and the NH4+ concentration achieves the highest value of 15.06 μmol/(gcat∙h) under simulated sunlight while nearly 6.22 μmol/(gcat∙h) under NIR light. Current study offers a promising and sustainable strategy for the fixation of atmospheric N2 using full-spectrum solar energy.



中文翻译:

上转换空心纳米球 CeF3 共掺杂 Yb3+ 和 Tm3+ 用于光催化固氮

太阳能驱动的氮 (N 2 ) 固定以合成氨是传统 Haber-Bosch 方法满足工业需求的潜在替代方案,但在很大程度上受到太阳能收集和活化惰性 N 2的困难的阻碍。本工作采用微波水热法制备了共掺杂活化剂Tm 3+和敏化剂Yb 3+ (Yb 3+ :Tm 3+ :CeF 3 )的空心CeF 3纳米球。通过调节Ce 3+ :Yb 3+ :Tm 3+的摩尔比,将该产物用作光驱动N 2固定的催化剂. 结果表明,多孔中空结构通过物理散射和反射增强了光的捕获能力。此外,杂原子掺杂产生大量氟空位(F V ),为N 2的吸附和活化提供了丰富的活性位点。CeF 3 :Yb 3+ :Tm 3+摩尔比为178:20:2 的样品展示了太阳能的最高利用率,这归因于近红外 (NIR) 光到可见光和紫外 (UV) 的最强上转换能力光照下,NH 4 +浓度在模拟日光下达到最高值15.06 μmol/(g cat ∙h),接近6.22 μmol/(g cat∙h) 在近红外光下。目前的研究为使用全光谱太阳能固定大气中的 N 2提供了一种有前途且可持续的策略。

更新日期:2021-03-09
down
wechat
bug