当前位置: X-MOL 学术Part. Part. Syst. Charact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gas‐Phase Synthesis of Silicon‐Rich Silicon Nitride Nanoparticles for High Performance Lithium–Ion Batteries
Particle & Particle Systems Characterization ( IF 2.7 ) Pub Date : 2021-03-07 , DOI: 10.1002/ppsc.202100007
Stefan O. Kilian 1 , Hartmut Wiggers 1, 2
Affiliation  

The practical application of silicon‐based anodes is severely hindered by continuous capacity fade during cycling. A very promising way to stabilize silicon in lithium–ion battery (LIB) anodes is the utilization of nanostructured silicon‐rich silicon nitride (SiNx), a conversion‐type anode material. Here, SiNx with structure sizes in the sub‐micrometer range have been synthesized in a hot‐wall reactor by pyrolysis of monosilane and ammonia. This work focusses on understanding process parameter–particle property correlations. Further, a model for the growth of SiNx nanoparticles in this hot–wall–reactor design is proposed. This synthesis concept is of specific interest regarding simplicity, flexibility, and scalability: A way utilizing any mixtures of precursor gases to build multi‐functional nanoparticles that can be directly used for LIBs instead of focusing on modification of nanostructures after they have been formed. Lab‐scale production rates as high as 30 g h−1 can be easily achieved and further scaled. SiN0.7 nanoparticles provide a first cycle coulombic efficiency of 54%, a specific discharge capacity of 1367 mAh g−1, and a capacity retention over 80% after 300 cycles at 0.5 C (j = 0.68 mA cm−2). These results imply that silicon‐rich silicon nitrides are promising candidates for high‐performance LIBs with very high durability.

中文翻译:

用于高性能锂离子电池的富含硅的氮化硅纳米粒子的气相合成

硅基阳极的实际应用受到循环过程中连续容量衰减的严重阻碍。稳定锂离子电池(LIB)阳极中硅的一种非常有希望的方法是利用纳米结构的富硅氮化硅(SiN x),这是一种转换型阳极材料。在这里,结构尺寸在亚微米范围内的SiN x是在热壁反应器中通过甲硅烷和氨的热解合成的。这项工作着重于理解过程参数与粒子特性的相关性。此外,SiN x的生长模型提出了在这种热壁反应器设计中使用纳米颗粒的方法。这种合成概念特别关注简单性,灵活性和可扩展性:利用前体气体的任何混合物来构建可直接用于LIB的多功能纳米颗粒的方法,而不是在形成纳米结构后专注于改性。可以轻松实现实验室规模的高达30 gh -1的生产率,并进一步扩大规模。SiN 0.7纳米颗粒的第一循环库仑效率为54%,比放电容量为1367 mAh g -1,在0.5 C下经过300次循环后的容量保持率超过80%(j  = 0.68 mA cm -2))。这些结果表明,富硅氮化硅是具有极高耐久性的高性能LIB的有前途的候选者。
更新日期:2021-04-19
down
wechat
bug