当前位置: X-MOL 学术Rob. Auton. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust gait design for a compass gait biped on slippery surfaces
Robotics and Autonomous Systems ( IF 4.3 ) Pub Date : 2021-03-05 , DOI: 10.1016/j.robot.2021.103762
Tan Chen , Bill Goodwine

Most current bipedal robots were modeled with an assumption that there is no slip between the stance foot and ground. This paper relaxes that assumption and undertakes a comprehensive study of the compass gait biped on slippery ground. It presents in detail the control of a biped that allows for foot slipping, and shows that feasible gaits fail on slippery ground for two causes: falling backward or requiring negative contact force which cannot be provided by the ground. To characterize a robust gait on slippery ground, three safety factors are proposed to measure the robustness: slip friction, falling friction and tolerance ability of slipping without falling. This study thus uses these factors to investigate independent influence of gait speed and step length on the robustness of the gait, and shows that gaits with small step length and moderate speed are robust and preferable on slippery surfaces. In contrast, gaits with large step length generally require large friction to maintain stable walking on slippery surfaces. Moreover, gaits with a backward swing foot velocity relative to the ground just before touch down are generally more robust than ones with a forward velocity. It is further shown that only one parameter in gait design determines the swing-backward feature, which can help design robust gaits. Models with varying physical parameters such as mass, leg length and position of center of mass (CoM) in each leg, are also studied to validate the universality of this result.



中文翻译:

健壮的步态设计,可在光滑的表面上踩踏罗盘

当前大多数双足机器人都以姿势脚与地面之间没有打滑的假设为模型。本文放宽了这一假设,并对在湿滑的地面上踩踏的罗盘步态进行了全面研究。它详细介绍了允许踩脚的两足动物的控制,并显示了可行的步态在湿滑的地面上失败的原因有两个:倒退或需要地面无法提供的负接触力。为了表征在湿滑地面上的稳健步态,提出了三个安全系数来衡量其稳健性:滑移摩擦力,下降摩擦力和不滑倒的耐受能力。因此,本研究使用这些因素来研究步态速度和步长对步态健壮性的独立影响,并显示出步长小,速度适中的步态很健壮,在光滑的表面上比较合适。相反,步长大的步态通常需要较大的摩擦力才能在光滑的表面上保持稳定的行走。而且,刚好在着陆之前具有相对于地面的向后挥脚速度的步态通常比具有向前速度的步态更健壮。进一步表明,步态设计中只有一个参数确定后摆特征,这可以帮助设计稳健的步态。还研究了具有变化的物理参数(例如质量,腿长和每条腿的质心位置(CoM))的模型,以验证该结果的普遍性。大步长的步态通常需要较大的摩擦力才能在光滑的表面上保持稳定的行走。此外,刚好在着陆之前具有相对于地面的向后挥脚速度的步态通常比具有向前速度的步态更健壮。进一步表明,步态设计中只有一个参数确定后摆特征,这可以帮助设计稳健的步态。还研究了具有不同物理参数(例如质量,腿长和每条腿的质心位置(CoM))的模型,以验证该结果的普遍性。大步长的步态通常需要较大的摩擦力才能在光滑的表面上保持稳定的行走。而且,刚好在着陆之前具有相对于地面的向后挥脚速度的步态通常比具有向前速度的步态更健壮。进一步表明,步态设计中只有一个参数确定后摆特征,这可以帮助设计稳健的步态。还研究了具有变化的物理参数(例如质量,腿长和每条腿的质心位置(CoM))的模型,以验证该结果的普遍性。这可以帮助设计稳健的步态。还研究了具有变化的物理参数(例如质量,腿长和每条腿的质心位置(CoM))的模型,以验证该结果的普遍性。这可以帮助设计稳健的步态。还研究了具有变化的物理参数(例如质量,腿长和每条腿的质心位置(CoM))的模型,以验证该结果的普遍性。

更新日期:2021-03-08
down
wechat
bug