当前位置: X-MOL 学术Mar. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An object-oriented method for fully coupled analysis of floating offshore wind turbines through mapping of aerodynamic coefficients
Marine Structures ( IF 3.9 ) Pub Date : 2021-03-06 , DOI: 10.1016/j.marstruc.2021.102979
Omar El Beshbichi , Yihan Xing , Muk Chen Ong

This work presents a novel object-oriented approach to model the fully-coupled dynamic response of floating offshore wind turbines (FOWTs). The key features offered by the method are the following: 1) its structure naturally allows for easy implementation of arbitrary platform geometries and platform/rotor configurations, 2) the analysis time is significantly faster than that of standard codes and results are accurate in situations where rotor dynamic contribution is negligible, and 3) an extremely flexible modeling environment is offered by the object-oriented nature of Modelica. Moreover, the current modeling facility used for the code development is open source and is naturally suitable for code sharing. In the present method, the aerodynamic model computes the aerodynamic loads through the mapping of steady-state aerodynamic coefficients. This modeling approach can be placed at the intersection between simplified aerodynamic methods, such as TDHMill, and full beam element/momentum-based aerodynamic methods. Aerodynamic loads obtained from the coefficients mapping are composed of a concentrated thrust and a concentrated torque. The thrust acts at the hub, while the torque is applied at the rotor low-speed shaft of a simplified rigid rotor equation of motion (EoM) used to emulate the rotor response. The aerodynamic coefficients are computed in FAST for a baseline 5 MW wind turbine. A standard rotor-collective blade-pitch control model is implemented. The system is assumed to be rigid. Linear hydrodynamics is employed to compute hydrodynamic loads. The industry-standard numerical-panel code Sesam-Wadam (DNV-GL) is used to preprocess the frequency-domain hydrodynamic problem. Validation of the code considers a standard spar-buoy platform, based on the Offshore Code Comparison Collaboration (OC3-Hywind). The dynamic response is tested in terms of free-decay response, Response Amplitude Operator (RAO), and the time histories and power spectral densities (PSDs) of several load cases including irregular waves and turbulent wind. The resulting model is benchmarked against well-known code-to-code comparisons and a good agreement is obtained.



中文翻译:

面向对象的方法通过空气动力学系数映射对浮动海上风力涡轮机进行完全耦合分析

这项工作提出了一种新颖的面向对象的方法来对浮式海上风力涡轮机(FOWT)的全耦合动态响应进行建模。该方法提供的主要特征如下:1)它的结构自然允许轻松实现任意平台几何形状和平台/转子配置,2)分析时间比标准代码的分析时间快得多,并且在以下情况下结果是准确的转子的动态贡献可以忽略不计,并且3)Modelica的面向对象特性提供了极为灵活的建模环境。此外,用于代码开发的当前建模工具是开源的,自然适合于代码共享。在本方法中,空气动力学模型通过稳态空气动力学系数的映射来计算空气动力学负荷。可以将这种建模方法放在简化的空气动力学方法(例如TDHMill)和基于全梁元素/动量的空气动力学方法之间的交集处。从系数映射获得的空气动力学负载由集中的推力和集中的扭矩组成。推力作用在轮毂上,而扭矩施加在用于模拟转子响应的简化刚性转子运动方程(EoM)的转子低速轴上。空气动力学系数在FAST中针对基线5兆瓦风力涡轮机进行计算。实现了标准的转子总叶片桨距控制模型。假定系统是刚性的。线性流体力学用于计算流体力学载荷。使用行业标准的数字面板代码Sesam-Wadam(DNV-GL)来预处理频域水动力问题。基于离岸代码比较协作(OC3-Hywind),对代码的验证考虑了标准的晶石浮标平台。根据自由衰减响应,响应振幅算子(RAO)以及几种载荷情况(包括不规则波和湍流风)的时间历史和功率谱密度(PSD),对动态响应进行了测试。相对于众所周知的代码与代码比较,对生成的模型进行了基准测试,并获得了良好的一致性。

更新日期:2021-03-07
down
wechat
bug