当前位置: X-MOL 学术Environ. Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Is the efficacy of satellite-based inversion of SO2 emission model dependent?
Environmental Research Letters ( IF 6.7 ) Pub Date : 2021-03-03 , DOI: 10.1088/1748-9326/abe829
Nan Li 1 , Keqin Tang 1 , Yi Wang 2 , Jun Wang 2 , Weihang Feng 1 , Haoran Zhang 1 , Hong Liao 1 , Jianlin Hu 1 , Xin Long 3 , Chong Shi 4 , Xiaoli Su 5
Affiliation  

Satellite-based inverse modeling has the potential to drive aerosol precursor emissions, but its efficacy for improving chemistry transport models (CTMs) remains elusive because of its likely inherent dependence on the error characteristics of a specific CTM used for the inversion. This issue is quantitively assessed here by using three CTMs. We show that SO2 emissions from global GEOS-Chem adjoint model and OMI SO2 data, when combined with spatial variation of bottom-up emissions, can largely improve WRF-Chem and WRF-CMAQ forecast of SO2 and aerosol optical depth (in reference to moderate resolution imaging spectroradiometer data) in China. This suggests that the efficacy of satellite-based inversion of SO2 emission appears to be high for CTMs that use similar or identical emission inventories. With the advent of geostationary air quality monitoring satellites in next 3 years, this study argues that an era of using top-down approach to rapidly update emission is emerging for regional air quality forecast, especially over Asia having highly varying emissions.

更新日期:2021-03-03
down
wechat
bug