当前位置: X-MOL 学术Nanoscale Horiz. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultratough and ultrastrong graphene oxide hybrid films via a polycationitrile approach
Nanoscale Horizons ( IF 9.7 ) Pub Date : 2021-2-15 , DOI: 10.1039/d1nh00073j
Jian Chang 1, 2, 3, 4 , Miao Zhang 1, 2, 3, 4 , Qiang Zhao 5, 6, 7, 8, 9 , Liangti Qu 10, 11, 12, 13 , Jiayin Yuan 1, 2, 3, 4
Affiliation  

Graphene oxide (GO) is a classic two dimensional (2D) building block that can be used to develop high-performance materials for numerous applications, particularly in the energy and environmental fields. Currently, the precise assembly of GO nanosheets into macroscopic nanohybrids of superior strength and toughness is desirable, and faces challenges and trade-offs. Herein, we exploited the freshly established polycationitrile method as a powerful molecular crosslinking strategy to engineer ultratough and ultrastrong GO/polymer hybrid films, in which a covalent triazine-based network was constructed in a mild condition to reinforce the interface between GO nanosheets. The tensile strength and toughness reached 585 ± 25 MPa and 14.93 ± 1.09 MJ m−3, respectively, which, to the best of our knowledge, are the current world records in all GO-based hybrid films. As an added merit of the tailor-made polymer crosslinker, the high mechanical performance can be maintained in large part at an extremely high relative humidity of 98%. This emerging interface-engineering approach paves a new avenue to produce integrated strong-and-tough 2D nanohybrid materials that are useful in aerospace, artificial muscle, energy harvesting, tissue engineering and more.

中文翻译:

通过聚阳离子腈方法制备的超韧超强氧化石墨烯杂化膜

氧化石墨烯(GO)是经典的二维(2D)构建基块,可用于开发适用于多种应用的高性能材料,特别是在能源和环境领域。当前,将GO纳米片精确地组装成具有优异的强度和韧性的宏观纳米混合体是理想的,并且面临挑战和折衷。在这里,我们利用新近建立的聚阳离子腈方法作为一种强大的分子交联策略来工程化超韧和超强的GO /聚合物杂化薄膜,其中在温和条件下构建了基于共价三嗪的网络以增强GO纳米片之间的界面。拉伸强度和韧性达到585±25 MPa和14.93±1.09 MJ m -3据我们所知,分别是所有基于GO的混合电影中的世界纪录。作为量身定制的聚合物交联剂的另一个优点,可以在98%的极高相对湿度下很大程度上保持较高的机械性能。这种新兴的界面工程方法为生产集成的强韧2D纳米杂化材料开辟了一条新途径,该材料可用于航空航天,人造肌肉,能量收集,组织工程等领域。
更新日期:2021-03-04
down
wechat
bug