当前位置: X-MOL 学术Photosynth. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photosynthetic resistance and resilience under drought, flooding and rewatering in maize plants
Photosynthesis Research ( IF 3.7 ) Pub Date : 2021-03-04 , DOI: 10.1007/s11120-021-00825-3
Miao Qi 1, 2 , Xiaodi Liu 1, 2 , Yibo Li 1, 2 , He Song 1, 2 , Zuotian Yin 1, 2 , Feng Zhang 1 , Qijin He 3 , Zhenzhu Xu 1 , Guangsheng Zhou 1, 4
Affiliation  

Abnormally altered precipitation patterns induced by climate change have profound global effects on crop production. However, the plant functional responses to various precipitation regimes remain unclear. Here, greenhouse and field experiments were conducted to determine how maize plant functional traits respond to drought, flooding and rewatering. Drought and flooding hampered photosynthetic capacity, particularly when severe and/or prolonged. Most photosynthetic traits recovered after rewatering, with few compensatory responses. Rewatering often elicited high photosynthetic resilience in plants exposed to severe drought at the end of plant development, with the response strongly depending on the drought severity/duration. The associations of chlorophyll concentrations with photosynthetically functional activities were stronger during post-tasseling than pre-tasseling, implying an involvement of leaf age/senescence in responses to episodic drought and subsequent rewatering. Coordinated changes in chlorophyll content, gas exchange, fluorescence parameters (PSII quantum efficiency and photochemical/non-photochemical radiative energy dissipation) possibly contributed to the enhanced drought resistance and resilience and suggested a possible regulative trade-off. These findings provide fundamental insights into how plants regulate their functional traits to deal with sporadic alterations in precipitation. Breeding and management of plants with high resistance and resilience traits could help crop production under future climate change.



中文翻译:

玉米植物在干旱、洪水和再浇水下的光合抗性和恢复力

气候变化引起的异常改变的降水模式对作物生产具有深远的全球影响。然而,植物对各种降水状况的功能反应仍不清楚。在这里,进行了温室和田间试验以确定玉米植物功能性状如何响应干旱、洪水和再浇水。干旱和洪水阻碍了光合作用能力,特别是在严重和/或长期的情况下。大多数光合性状在复水后恢复,几乎没有补偿反应。再浇水通常会在植物发育末期暴露于严重干旱的植物中引起高光合恢复力,其响应很大程度上取决于干旱的严重程度/持续时间。叶绿素浓度与光合功能活动的关联在后雄蕊期间比雄蕊前更强,这意味着叶龄/衰老参与了对偶发性干旱和随后的再浇水的反应。叶绿素含量、气体交换、荧光参数(PSII 量子效率和光化学/非光化学辐射能量耗散)的协调变化可能有助于增强抗旱性和恢复力,并提出可能的调节权衡。这些发现为植物如何调节其功能性状以应对降水的零星变化提供了基本见解。培育和管理具有高抗性和恢复力性状的植物可以帮助未来气候变化下的作物生产。这意味着叶龄/衰老参与了对偶发性干旱和随后的再浇水的反应。叶绿素含量、气体交换、荧光参数(PSII 量子效率和光化学/非光化学辐射能量耗散)的协调变化可能有助于增强抗旱性和恢复力,并提出可能的调节权衡。这些发现为植物如何调节其功能性状以应对降水的零星变化提供了基本见解。培育和管理具有高抗性和恢复力性状的植物可以帮助未来气候变化下的作物生产。这意味着叶龄/衰老参与了对偶发性干旱和随后的再浇水的反应。叶绿素含量、气体交换、荧光参数(PSII 量子效率和光化学/非光化学辐射能量耗散)的协调变化可能有助于增强抗旱性和恢复力,并提出可能的调节权衡。这些发现为植物如何调节其功能性状以应对降水的零星变化提供了基本见解。培育和管理具有高抗性和恢复力性状的植物可以帮助未来气候变化下的作物生产。荧光参数(PSII 量子效率和光化学/非光化学辐射能量耗散)可能有助于增强抗旱性和恢复力,并提出可能的调节权衡。这些发现为植物如何调节其功能性状以应对降水的零星变化提供了基本见解。培育和管理具有高抗性和恢复力性状的植物可以帮助未来气候变化下的作物生产。荧光参数(PSII 量子效率和光化学/非光化学辐射能量耗散)可能有助于增强抗旱性和恢复力,并提出可能的调节权衡。这些发现为植物如何调节其功能性状以应对降水的零星变化提供了基本见解。培育和管理具有高抗性和恢复力性状的植物可以帮助未来气候变化下的作物生产。

更新日期:2021-03-04
down
wechat
bug