当前位置: X-MOL 学术Bull. Math. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diffusive Interface Model for Actomyosin Driven Cell Oscillations
Bulletin of Mathematical Biology ( IF 3.5 ) Pub Date : 2021-03-03 , DOI: 10.1007/s11538-021-00866-8
Xiaoqiang Wang 1 , Liyong Zhu 2
Affiliation  

In this paper, we build phase-field models for the actomyosin driven cell oscillations. In our modeling, an oscillation starts from an actin cortex breakage. After the breakage, due to the unbalanced distribution of actin and myosin, there is unbalanced contraction force in different membrane components, which then results in the lipids transferring to the bulged membrane compartment. As such we can observe a cell oscillation. During the whole process, the actin and myosin polymerization and depolymerization play important roles. We give detailed formulations under the framework of phase-field methodology, in which phase-field functions are used to describe different parts of the cell membrane, integrated with the distribution of the actin and myosin at different components. The whole system is described as a set of time-dependent partial differential equations in three-dimensional space. Forward Euler method is used to solve the system. The spectral method is used for spatial discretizations for efficiency and accuracy purpose. Given carefully selected parameters, three-dimensional simulations are performed and compared with biological images. The simulations prove that actomyosin dynamics are the major reasons for cell oscillations. Further, our method can be easily extended into the simulations of cell polarization. We also compared our numerical simulations with biological experiments. This modeling gives an example of applying diffusive interface methods toward complex biology experiments.



中文翻译:

肌动球蛋白驱动细胞振荡的扩散界面模型

在本文中,我们为肌动球蛋白驱动的细胞振荡建立了相场模型。在我们的建模中,振荡从肌动蛋白皮层断裂开始。破裂后,由于肌动蛋白和肌球蛋白分布不平衡,不同膜成分产生不平衡的收缩力,从而导致脂质转移到凸起的膜室。因此,我们可以观察到细胞振荡。在整个过程中,肌动蛋白和肌球蛋白的聚合和解聚起着重要作用。我们在相场方法的框架下给出了详细的公式,其中相场函数用于描述细胞膜的不同部分,并结合不同成分的肌动蛋白和肌球蛋白的分布。整个系统被描述为一组三维空间中与时间相关的偏微分方程。前向欧拉方法用于求解系统。频谱方法用于空间离散化以提高效率和准确性。给定精心选择的参数,执行三维模拟并与生物图像进行比较。模拟证明肌动球蛋白动力学是细胞振荡的主要原因。此外,我们的方法可以很容易地扩展到细胞极化的模拟中。我们还将我们的数值模拟与生物实验进行了比较。该建模给出了将扩散界面方法应用于复杂生物学实验的示例。频谱方法用于空间离散化以提高效率和准确性。给定精心选择的参数,执行三维模拟并与生物图像进行比较。模拟证明肌动球蛋白动力学是细胞振荡的主要原因。此外,我们的方法可以很容易地扩展到细胞极化的模拟中。我们还将我们的数值模拟与生物实验进行了比较。该建模给出了将扩散界面方法应用于复杂生物学实验的示例。频谱方法用于空间离散化以提高效率和准确性。给定精心选择的参数,执行三维模拟并与生物图像进行比较。模拟证明肌动球蛋白动力学是细胞振荡的主要原因。此外,我们的方法可以很容易地扩展到细胞极化的模拟中。我们还将我们的数值模拟与生物实验进行了比较。该建模给出了将扩散界面方法应用于复杂生物学实验的示例。我们的方法可以很容易地扩展到细胞极化的模拟中。我们还将我们的数值模拟与生物实验进行了比较。该建模给出了将扩散界面方法应用于复杂生物学实验的示例。我们的方法可以很容易地扩展到细胞极化的模拟中。我们还将我们的数值模拟与生物实验进行了比较。该建模给出了将扩散界面方法应用于复杂生物学实验的示例。

更新日期:2021-03-03
down
wechat
bug