当前位置: X-MOL 学术Optica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths
Optica ( IF 10.4 ) Pub Date : 2021-03-02 , DOI: 10.1364/optica.404755
Renato R. Domeneguetti , Yun Zhao , Xingchen Ji , Marcelo Martinelli , Michal Lipson , Alexander L. Gaeta , Paulo Nussenzveig

We present an approach for generating widely separated first sidebands based solely on the four-wave-mixing process in optical parametric oscillators built on complementary metal–oxide–semiconductor-compatible photonic chips. Using higher-order transverse modes to perform dispersion engineering, we obtain zero-group-velocity dispersion near 796 nm. By pumping the chip in the normal dispersion region, at 795.6 nm, we generate a signal field in the visible band (at 546.2 nm) and the corresponding idler field in the telecom band (at 1465.3 nm), corresponding to a frequency span of approximately 346 THz. We show that the spectral position of signal and idler can be tailored by exploiting a delicate balance between second- and fourth-order dispersion terms. Furthermore, we explicitly demonstrate a change in the parametric oscillation dynamics when moving the pump field from the anomalous to normal dispersion, where the chip ceases producing multiple sidebands adjacent to the pump field and generates widely separated single sidebands. This provides a chip-scale platform for generating single-sideband fields separated by more than one octave, covering the visible and telecom spectral regions.

中文翻译:

从可见光到电信波长的CMOS兼容振荡器中的参数边带生成

我们提出了一种方法,该方法仅基于在互补金属-氧化物-半导体兼容光子芯片上构建的光学参量振荡器中的四波混频过程来生成广泛分离的第一边带。使用高阶横向模式进行色散工程,我们获得了796 nm附近的零群速度色散。通过将芯片泵浦到795.6 nm的正常色散区域,我们在可见频段(546.2 nm)中产生一个信号场,并在电信频段(1465.3 nm)中产生一个相应的空闲场,这对应于大约大约一个频率跨度346太赫兹 我们表明,可以通过利用二阶和四阶色散项之间的微妙平衡来调整信号和惰轮的频谱位置。此外,我们明确证明了在将泵浦场从异常移动到正常色散时,参量振荡动力学的变化,在这种情况下,芯片将停止产生与泵浦场相邻的多个边带,并产生广泛分离的单个边带。这提供了一个芯片级平台,用于生成由一个以上倍频程分隔的单边带场,覆盖可见光和电信频谱区域。
更新日期:2021-03-21
down
wechat
bug