当前位置: X-MOL 学术AIAA J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure
AIAA Journal ( IF 2.5 ) Pub Date : 2021-03-01 , DOI: 10.2514/1.j059771
Imran Naved 1 , Tobias Hermann 1 , Matthew McGilvray 1
Affiliation  

This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to account for quasi-two-dimensional lateral heat conduction effects, thereby allowing for analysis of more complex geometries. This enables very fast calculations of the two-dimensional transient temperature response of a transpiration-cooled thermal protection system suitable for first-order systems studies. To solve for the transpiration-cooled outer wall and a two-dimensional solid substructure, PIRATE has been coupled with the commercial finite element package COMSOL. This enables modeling of the longer-duration thermal effects of the integrated heat load over a flight trajectory. Transpiration cooling using helium coolant has been applied to a wing leading-edge model with an aluminum substructure. Carbon–carbon ceramic composite and the ultra-high-temperature ceramic Zirconium diboride (ZrB2) are chosen as candidate materials. Results for the substructure temperature history for the space shuttle reentry trajectory are obtained, showing that transpiration cooling can lead to a 35% reduction in peak substructure temperature and a 65% reduction in thermal gradients.



中文翻译:

带有子结构的高速汽车的蒸腾冷却的数值模拟

本文提出了一个数值模型,该模型评估了对高速飞行器的外壁和下部结构进行蒸腾冷却的效果。用于蒸发冷却评估的多孔脉冲响应分析(PIRATE)代码已得到扩展和验证,以解决准二维横向热传导效应,从而可以分析更复杂的几何形状。这样可以非常快速地计算适合一阶系统研究的蒸腾冷却的热保护系统的二维瞬态温度响应。为了解决蒸腾冷却的外壁和二维固体子结构,将PIRATE与商用有限元软件包COMSOL结合使用。这样就可以对飞行轨迹上的综合热负荷的较长时间的热效应进行建模。使用氦冷却剂的蒸腾冷却已应用于具有铝下部结构的机翼前缘模型。碳-碳陶瓷复合材料和超高温陶瓷二硼化锆(锆石2个)作为候选材料。获得了航天飞机再入轨迹的子结构温度历史的结果,表明蒸腾冷却可导致子结构峰值温度降低35%,热梯度降低65%。

更新日期:2021-03-02
down
wechat
bug