当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Delayed bifurcation in elastic snap-through instabilities
Journal of the Mechanics and Physics of Solids ( IF 5.3 ) Pub Date : 2021-03-02 , DOI: 10.1016/j.jmps.2021.104386
Mingchao Liu , Michael Gomez , Dominic Vella

We study elastic snap-through induced by a control parameter that evolves dynamically. In particular, we study an elastic arch subject to an end-shortening that evolves linearly with time, i.e. at a constant rate. For large end-shortening the arch is bistable but, below a critical end-shortening, the arch becomes monostable. We study when and how the arch transitions between states and show that the end-shortening at which the fast ‘snap’ happens depends on the rate at which the end-shortening is reduced. This delay in snap-through is a consequence of delayed bifurcation and occurs even in the perfectly elastic case when viscous (and viscoelastic) effects are negligible. We present the results of numerical simulations to determine the magnitude of this delay (and the associated time lag) as the loading rate and the importance of external viscous damping vary. We also present an asymptotic analysis of the geometrically-nonlinear problem that reduces the salient dynamics to that of an ordinary differential equation; the form of this reduced equation is generic for snap-through instabilities in which the relevant control parameter is ramped linearly in time. Moreover, this asymptotic reduction allows us to derive analytical results for the delay observed in snap-through that are in good agreement with the numerical results of our simulations. Finally, we discuss scaling laws for the delay that should be expected in other examples of delayed bifurcation in elastic instabilities.



中文翻译:

弹性咬合不稳定性中的分叉延迟

我们研究由动态变化的控制参数引起的弹性捕捉。特别是,我们研究了一种弹性拱形结构,该拱形结构的末端缩短随着时间线性变化,即以恒定的速率变化。对于大的末端缩短,拱形是双稳态的,但在临界末端缩短以下,拱形变为单稳态的。我们研究了拱形何时在状态之间转换以及如何在状态之间转换,并显示出发生快速“折断”的末端缩短取决于末端缩短减少的速率。击穿延迟是分叉延迟的结果,即使在粘弹性(和粘弹性)作用可忽略不计的完全弹性情况下也会发生。我们介绍了数值模拟的结果,以确定该延迟的大小(以及相关的时滞),因为加载速率和外部粘性阻尼的重要性会发生变化。我们还提出了一个几何非线性问题的渐近分析,该问题使显着动力学降低到一个常微分方程。该简化方程式的形式适用于速动不稳定性,在这种情况下,相关控制参数会随时间线性变化。而且,这种渐近减小使我们能够得出在快速捕捉中观察到的延迟的分析结果,这些分析结果与我们的模拟数值结果非常吻合。最后,我们讨论了弹性不稳定性中延迟分叉的其他示例中应预期的延迟定标律。我们还提出了一个几何非线性问题的渐近分析,该问题使显着动力学降低到一个常微分方程。该简化方程式的形式适用于速动不稳定性,在这种情况下,相关控制参数会随时间线性变化。而且,这种渐近减小使我们能够得出在快速捕捉中观察到的延迟的分析结果,这些分析结果与我们的模拟数值结果非常吻合。最后,我们讨论了弹性不稳定性中延迟分叉的其他示例中应预期的延迟定标律。我们还提出了一个几何非线性问题的渐近分析,该问题使显着动力学降低到一个常微分方程。该简化方程式的形式适用于速动不稳定性,在这种情况下,相关控制参数会随时间线性变化。而且,这种渐近减小使我们能够得出在快速捕捉中观察到的延迟的分析结果,这些分析结果与我们的模拟数值结果非常吻合。最后,我们讨论了弹性不稳定性中延迟分叉的其他示例中应预期的延迟定标律。该简化方程式的形式适用于速动不稳定性,在这种情况下,相关控制参数会随时间线性变化。而且,这种渐近减小使我们能够得出在快速捕捉中观察到的延迟的分析结果,这些分析结果与我们的模拟数值结果非常吻合。最后,我们讨论了弹性不稳定性中延迟分叉的其他示例中应预期的延迟定标律。该简化方程式的形式适用于速动不稳定性,在这种情况下,相关控制参数会随时间线性变化。而且,这种渐近减小使我们能够得出在快速捕捉中观察到的延迟的分析结果,这些分析结果与我们的模拟数值结果非常吻合。最后,我们讨论了弹性不稳定性中延迟分叉的其他示例中应预期的延迟定标律。

更新日期:2021-03-02
down
wechat
bug