当前位置: X-MOL 学术Finite Elem. Anal. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A simple and computationally efficient stress integration scheme based on numerical approximation of the yield function gradients: Application to advanced yield criteria
Finite Elements in Analysis and Design ( IF 3.1 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.finel.2021.103538
N. Hosseini , J.A. Rodríguez-Martínez

In this paper, we have modified the stress integration scheme proposed by Choi and Yoon [1]; which is based on the numerical approximation of the yield function gradients, to implement in the finite element code ABAQUS three elastic isotropic, plastic anisotropic constitutive models with yielding described by Yld2004-18p [2], CPB06ex2 [3] and Yld2011-27p [4] criteria, respectively. We have developed both VUMAT and UMAT subroutines for the three constitutive models, and have carried out cylindrical cup deep drawing test simulations and calculations of dynamic necking localization under plane strain tension, using explicit and implicit analyses. An original feature of this paper is that these finite element simulations are systematically compared with additional calculations performed using (i) the numerical approximation scheme developed by Choi and Yoon [1]; and (ii) the analytical computation of the first and second order yield functions gradients. This comparison has shown that the numerical approximation of the yield function gradients proposed in this paper facilitates the implementation of the constitutive models, and in the case of the implicit analyses, it leads to a significant decrease of the computational time without impairing the accuracy of the finite element results. In addition, we have demonstrated that there is a critical loading rate below which the dynamic implicit analyses are computationally more efficient than the explicit calculations.



中文翻译:

一种基于屈服函数梯度的数值逼近的简单且计算效率高的应力积分方案:应用于高级屈服准则

在本文中,我们修改了Choi和Yoon [1]提出的应力积分方案。基于屈服函数梯度的数值逼近,在有限元代码ABAQUS中实现了Yld2004-18p [2],CPB06ex2 [3]和Yld2011-27p [4]所描述的三个弹性各向同性塑性各向异性本构模型。 ]标准。我们为这三个本构模型开发了VUMAT和UMAT子例程,并使用显式和隐式分析进行了圆柱杯深拉试验测试以及在平面应变张力下的动态颈缩局部化计算。本文的原始特征是系统地将这些有限元模拟与使用(i)Choi和Yoon [1]开发的数值逼近方案进行的其他计算进行比较。(ii)一阶和二阶屈服函数梯度的解析计算。这种比较表明,本文提出的屈服函数梯度的数值逼近有利于本构模型的实现,并且在隐式分析的情况下,这会导致计算时间显着减少,而不会损害计算的准确性。有限元结果。此外,我们已经证明,存在一个临界加载速率,低于该速率时,动态隐式分析在计算上比显式计算更有效。(ii)一阶和二阶屈服函数梯度的解析计算。这种比较表明,本文提出的屈服函数梯度的数值逼近有利于本构模型的实现,并且在隐式分析的情况下,这会导致计算时间显着减少,而不会损害计算的准确性。有限元结果。此外,我们已经证明,存在一个临界加载速率,低于该速率时,动态隐式分析在计算上比显式计算更有效。(ii)一阶和二阶屈服函数梯度的解析计算。这种比较表明,本文提出的屈服函数梯度的数值逼近有利于本构模型的实现,并且在隐式分析的情况下,这会导致计算时间显着减少,而不会损害计算的准确性。有限元结果。此外,我们已经证明,存在一个临界加载速率,低于该速率时,动态隐式分析在计算上比显式计算更有效。在隐式分析的情况下,它可以显着减少计算时间,而不会影响有限元结果的准确性。此外,我们已经证明,存在一个临界加载速率,低于该速率时,动态隐式分析在计算上比显式计算更有效。在隐式分析的情况下,它可以显着减少计算时间,而不会影响有限元结果的准确性。此外,我们已经证明,存在一个临界加载速率,低于该速率时,动态隐式分析在计算上比显式计算更有效。

更新日期:2021-03-02
down
wechat
bug