当前位置: X-MOL 学术Microfluid. Nanofluid. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-parameter scaling transformations of Maxwell nanofluid with Ludwig–Soret and pedesis motion passed over stretching–shrinking surfaces
Microfluidics and Nanofluidics ( IF 2.8 ) Pub Date : 2021-03-01 , DOI: 10.1007/s10404-021-02431-0
Musharafa Saleem , Muhammad Nazim Tufail , Qasim Ali Chaudhry

The study of the two-dimensional Maxwell nanofluid flows comprises influences of magnetohydrodynamics (MHD), Joule heating, thermal radiation, chemical reaction, Ludwig–Soret and pedesis motion that crosses stretching–shrinking surfaces. The momentum, thermal, and nano-concentrated boundary layer equations (BLEs) have been acquired with suction–injection phenomena. The governed partial differential equations (PDEs) are managed by the method of Lie scaling, a special class of the method of the Lie group. In the MATLAB, a system of ordinary differential equations (ODEs) with the aid of bvp4c was numerically solved. The graphs demonstrate the effects of various material parameters on the momentum, thermal and nano-concentrated profiles. For both stretching and shrinking surfaces, the graphical effects are displayed. As Maxwell nanofluid moves through the stretching surface, it reduces the momentum profile. In the case of shrinking surface, as the Deborah number increases, the magnitude of the momentum profile is increased. Thermal properties were improved by magnetized nanofluid particles as nanofluid travelled through the stretched surface but had an opposing activity in case of a decrease. As the heat transfer to mass diffusiveness ratio increased, the nano-concentration variations improved on both stretching and shrinking surfaces. Influences of material parameters analyzed via the tables for the radiative local Nusselt and Sherwood numbers.



中文翻译:

麦克斯韦纳米流体与路德维希·索雷特和佩迪西斯运动的一参数缩放转换通过拉伸-收缩表面

二维麦克斯韦纳米流体流动的研究包括磁流体动力学(MHD),焦耳热,热辐射,化学反应,路德维希-索雷特(Ludwig-Soret)和横跨拉伸-收缩表面的pedesis运动的影响。动量,热和纳米浓缩边界层方程(BLEs)已通过吸-注现象获得。受控偏微分方程(PDE)通过Lie标度方法管理,这是Lie组方法的特殊类别。在MATLAB中,借助bvp4c对常微分方程(ODE)系统进行了数值求解。这些图说明了各种材料参数对动量,热和纳米浓度分布的影响。对于拉伸和收缩表面,都会显示图形效果。当麦克斯韦纳米流体在拉伸表面上移动时,它减小了动量分布。在表面缩小的情况下,随着Deborah数的增加,动量分布的大小也会增加。当纳米流体穿过拉伸的表面时,磁化的纳米流体颗粒改善了热性能,但在减少的情况下却具有相反的活性。随着传热与质量扩散比的增加,纳米浓度变化在拉伸和收缩表面上均得到改善。通过表格分析材料参数对辐射局部Nusselt和Sherwood数的影响。当纳米流体穿过拉伸的表面时,磁化的纳米流体颗粒改善了热性能,但在减少的情况下却具有相反的活性。随着传热与质量扩散比的增加,纳米浓度变化在拉伸和收缩表面上均得到改善。通过表格分析材料参数对辐射局部Nusselt和Sherwood数的影响。当纳米流体穿过拉伸的表面时,磁化的纳米流体颗粒改善了热性能,但在减少的情况下却具有相反的活性。随着传热与质量扩散比的增加,纳米浓度变化在拉伸和收缩表面上均得到改善。通过表格分析材料参数对辐射局部Nusselt和Sherwood数的影响。

更新日期:2021-03-02
down
wechat
bug