当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface phase stability of PdAg core-shell nanoalloys in oxidizing atmospheres and its relevance to surface atomic charge
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.jallcom.2021.159345
Weiqi Bian , Fuyi Chen , Zhen Li , Bo Kou , Tao Jin , Longfei Guo , Quan Tang

The early stage of oxidation on Pd6@Ag32 and Ag6@Pd32 core-shell nanoalloys are calculated by the surface phase stability diagrams using a first-principles atomistic thermodynamics method in oxidizing atmospheres. Ag38 nanoparticle with ΔμO = − 0.95 eV is more stable than Pd38 nanoparticle with ΔμO = − 1.3 eV. Unexpectedly, Pd6@Ag32 core-shell nanoalloy with ΔμO = − 0.9 eV exhibits better surface phase stability than Ag38 nanoparticle but Pd-segregated Pd6@Ag32 nanoalloys have lower stability than Ag38 nanoparticle. Meanwhile, Ag6@Pd32 core-shell nanoalloy with ΔμO = − 1.5 eV displays lower surface phase stability than Pd38 nanoparticle but Ag-segregated Ag6@Pd32 nanoalloys show better surface phase stability than Pd38 nanoparticle. Surface-segregated Pd6@Ag32 and Ag6@Pd32 core-shell nanoalloys with more surface Ag atoms tend to possess the higher surface phase stability. More interestingly, the order of surface phase stability follows the same trend of atomic charges, that is, the more negative charges corresponding to the lower surface phase stability. In addition, oxidation of PdAg nanoalloys can greatly change electronic structure and atomic charges and have diverse influences on catalytic properties. Unlike bulk PdAg alloys, the oxygen-induced Pd surface segregation in Pd6@Ag32 core-shell nanoalloy takes place under high oxygen coverage rather than vacuum and medium oxygen coverage. The high oxygen coverage upto 24 oxygen atoms can segregate Pd to outer shell in Pd6@Ag32 core-shell nanoalloy and restrain the segregation of Ag onto Ag6@Pd32 core-shell nanoalloy. Our results can provide useful information for designing PdAg-based catalyst materials with appropriate surface phase stability towards fuel cells.



中文翻译:

PdAg核-壳纳米合金在氧化气氛中的表面相稳定性及其与表面原子电荷的关系

使用第一性原理原子热力学方法在氧化气氛中,通过表面相稳定性图,计算了Pd 6 @Ag 32和Ag 6 @Pd 32核-壳纳米合金的早期氧化。的Ag 38纳米粒子与Δμ ö  = - 0.95 eV的是除Pd更稳定38的纳米颗粒与Δμ ö = - 1.3 eV的。出乎意料的是,钯6 @Ag 32核-壳纳米合金与Δμ ö  = - 0.9 eV的展品Ag相比更好的表面相稳定性38的纳米颗粒,但钯偏析的Pd 6 @Ag 32纳米合金的稳定性低于Ag 38纳米颗粒。同时,银6 @Pd 32与Δμ核-壳纳米合金ö = -为1.5eV显示低于钯表面相稳定性38纳米颗粒的Ag但偏析的Ag 6 @Pd 32个纳米合金显示比钯更好的表面相稳定性38纳米颗粒。表面分离的Pd 6 @Ag 32和Ag 6 @Pd 32具有更多表面Ag原子的核-壳纳米合金往往具有更高的表面相稳定性。更有趣的是,表面相稳定性的顺序遵循相同的原子电荷趋势,即负电荷越多,对应的表面相稳定性越低。此外,PdAg纳米合金的氧化可以极大地改变电子结构和原子电荷,并对催化性能产生多种影响。与块状PdAg合金不同,Pd 6 @Ag 32核壳纳米合金中氧诱导的Pd表面偏析发生在高氧覆盖率而不是真空和中氧覆盖率下。高达24个氧原子的高氧覆盖率可将Pd分离到Pd 6 @Ag 32中的外壳上核-壳纳米合金,并抑制Ag在Ag 6 @Pd 32核-壳纳米合金上的偏析。我们的结果可为设计具有对燃料电池具有适当表面相稳定性的PdAg基催化剂材料提供有用的信息。

更新日期:2021-03-05
down
wechat
bug