当前位置: X-MOL 学术Sci. China Phys. Mech. Astronomy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Suspended penetration wetting state of droplets on microstructured surfaces
Science China Physics, Mechanics & Astronomy ( IF 6.4 ) Pub Date : 2021-02-23 , DOI: 10.1007/s11433-020-1654-4
Jing Lou , SongLin Shi , Chen Ma , CunJing Lv , QuanShui Zheng

When a water droplet on a micropillar-structured hydrophobic surface is submitted to gradually increased pressure, the Cassie-Baxter wetting state transforms into the Wenzel wetting state once the pressure exceeds a critical value. It has been assumed that the reverse transition (Wenzel-to-Cassie-Baxter wetting state) cannot happen spontaneously after the pressure has been removed. In this paper, we report a new wetting-state transition. When external pressure is exerted on a droplet in the Cassie-Baxter wetting state on textured surfaces with high micropillars to trigger the breakdown of this wetting state, the droplet penetrates the micropillars but does not touch the base of the surface to trigger the occurrence of the Wenzel wetting state. We have named this state the suspended penetration wetting state. Spontaneous recovery from the suspended penetration wetting state to the initial Cassie-Baxter wetting state is achieved when the pressure is removed. Based on the experimental results, we built models to establish the penetration depth that the suspended penetration wetting state could achieve and to understand the energy barrier that influences the equilibrium position of the liquid surface. These results deepen our understanding of wetting states on rough surfaces subjected to external disturbances and shed new light on the design of superhydrophobic materials with a robust wetting stability.



中文翻译:

微结构表面上液滴的悬浮渗透润湿状态

当微柱结构疏水表面上的水滴逐渐增加压力时,一旦压力超过临界值,Cassie-Baxter润湿状态就会转变为Wenzel润湿状态。已经假定,在消除压力之后,不会自发发生反向转变(Wenzel-Cassie-Baxter润湿状态)。在本文中,我们报告了一个新的润湿状态转变。当在具有高微柱的纹理表面上以Cassie-Baxter润湿状态对液滴施加外部压力以触发该润湿状态的破坏时,液滴会穿透微柱,但不会接触表面的底部以触发发生Wenzel处于润湿状态。我们将此状态命名为悬浮渗透润湿状态。当去除压力时,实现了从悬浮渗透润湿状态到初始Cassie-Baxter润湿状态的自发恢复。基于实验结果,我们建立了模型来建立悬浮渗透润湿状态可以达到的渗透深度,并了解影响液体表面平衡位置的能垒。这些结果加深了我们对受外部干扰的粗糙表面上润湿状态的理解,并为具有强大润湿稳定性的超疏水材料的设计提供了新的思路。我们建立模型来建立悬浮渗透润湿状态可以达到的渗透深度,并了解影响液体表面平衡位置的能垒。这些结果加深了我们对受外部干扰的粗糙表面上润湿状态的理解,并为具有强大润湿稳定性的超疏水材料的设计提供了新的思路。我们建立模型来建立悬浮渗透润湿状态可以达到的渗透深度,并了解影响液体表面平衡位置的能垒。这些结果加深了我们对受外部干扰的粗糙表面上润湿状态的理解,并为具有强大润湿稳定性的超疏水材料的设计提供了新的思路。

更新日期:2021-03-01
down
wechat
bug