当前位置: X-MOL 学术Geofluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical Analysis on Stress and Deformation of Overburden Key Stratum in Solid Filling Coal Mining Based on the Multilayer Winkler Foundation Beam Model
Geofluids ( IF 1.7 ) Pub Date : 2021-02-27 , DOI: 10.1155/2021/6693888
Chao Ma 1 , Xiaoqian Guo 2 , Lianying Zhang 1 , Aihong Lu 2 , Xianbiao Mao 2 , Bing Li 1
Affiliation  

Solid backfill coal mining (SBCM) is a green mining technology which can effectively alleviate the environmental problems induced by traditional coal mining techniques, such as surface subsidence, water resources loss, coal gangue occupation, and pollution. In this study, a multilayer Winkler foundation beam model for the overburden key strata is proposed, and the model with two key strata is solved. The subsidence, rotating angle, inner force, and stress of the overburden key strata are systematically analyzed under various backfill elastic modulus, mining height, and soft layer thickness. The results show that the subsidence of the key strata exhibit “basin”-shape curves, and the backfill elastic modulus, mining height, and the thickness of the soft strata have significant influences on the subsidence of the key strata. The shear stress, horizontal stress, and vertical stress of key stratum can be effectively reduced by increasing the backfill elastic modulus. The increase of mining height has little influence on the stress of key stratum that close to the coal seam (key stratum #1), but has a significant effect on the stress of key stratum that above the soft layers (key stratum #2). On the contrary, the effect of increasing soft layer thickness on the stress of key stratum is opposite to that of increasing mining height. In addition, the shear failure of key stratum #1 at mining boundary and the tensile failures on both sides of mining boundary should be preferentially considered in SBCM engineering design. Due to the low shear stress level of key stratum #2, the tensile failure on both sides of the mining boundary should be mainly considered.

中文翻译:

基于多层Winkler地基梁模型的固井开采覆岩关键层应力变形理论分析

固体回填煤开采(SBCM)是一种绿色采矿技术,可以有效缓解传统煤矿开采技术引起的环境问题,例如地表沉陷,水资源损失,煤occupation石占用和污染。本研究提出了覆盖关键层的多层Winkler基础梁模型,并求解了具有两个关键层的模型。在各种回填弹性模量,开采高度和软层厚度下,系统地分析了上覆关键层的沉降,旋转角度,内力和应力。结果表明,关键层的沉降呈“盆地”形曲线,回填弹性模量,开采高度和软层厚度对关键层的沉降影响显着。剪应力 通过增加回填弹性模量,可以有效降低关键层的水平应力和垂直应力。开采高度的增加对靠近煤层的关键层(关键层#1)的应力影响很小,但对软层上方的关键层(关键层#2)的应力影响很大。相反,增加软层厚度对关键层应力的影响与增加开采高度的影响相反。此外,SBCM工程设计中应优先考虑关键层1在采煤边界的剪切破坏和采煤边界两侧的拉伸破坏。由于关键层#2的低剪切应力水平,应主要考虑开采边界两侧的拉伸破坏。增加回填弹性模量可以有效降低关键层的竖向应力。开采高度的增加对靠近煤层的关键层(关键层#1)的应力影响很小,但对软层上方的关键层(关键层#2)的应力影响很大。相反,增加软层厚度对关键层应力的影响与增加开采高度的影响相反。此外,在SBCM工程设计中应优先考虑关键层#1在采动边界处的剪切破坏和采动边界两侧的拉伸破坏。由于关键层#2的低剪切应力水平,应主要考虑开采边界两侧的拉伸破坏。增加回填弹性模量可以有效降低关键层的竖向应力。开采高度的增加对靠近煤层的关键层(关键层#1)的应力影响很小,但对软层上方的关键层(关键层#2)的应力影响很大。相反,增加软层厚度对关键层应力的影响与增加开采高度的影响相反。此外,SBCM工程设计中应优先考虑关键层1在采煤边界的剪切破坏和采煤边界两侧的拉伸破坏。由于关键层#2的低剪切应力水平,应主要考虑开采边界两侧的拉伸破坏。
更新日期:2021-02-28
down
wechat
bug