当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-velocity impact response of titanium-based fiber metal laminates. Part II: Analytical modeling
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2021-02-28 , DOI: 10.1016/j.ijimpeng.2021.103853
Ankush P. Sharma , R. Velmurugan , K. Shankar , SK Ha

This two-part article scrutinizes the influence of metal layer distribution through the thickness of titanium-based fiber metal laminates (FMLs) on their high-velocity projectile impact response and damage. The four different layups of FMLs consist of layers of glass fiber/epoxy and Ti-6Al-4V titanium alloy sheets, exhibiting the thickness of the total metal layer the same. Part I presents the experimental investigations of fully clamped FMLs demonstrating performance parameters, damage mechanisms, and ballistic resistance. Part II concerns the ballistic impact behavior of FMLs using analytical modeling, which is based on test results obtained in an accompanying study. An equivalent mass-spring system is used to obtain the transient deformation, ballistic limit, and absorbed energy of the laminate by various mechanisms. Good agreement is obtained between experimental and analytical ballistic limit velocity. The foremost part of the total energy absorption is by bending and membrane energy absorption (68 % - 72 %), with FML 4/3-0.3 absorbing a higher percentage of aforementioned energies followed by that of both FMLs 3/2 and FML 2/1-0.6. The predicted total energy absorption by several damage mechanisms of FMLs at the ballistic limit displays a reasonable matching with experiments.



中文翻译:

钛基纤维金属层压板的高速冲击响应。第二部分:分析建模

这篇由两部分组成的文章详细研究了钛基纤维金属层压板(FML)厚度对金属层分布的影响,这些影响对它们的高速弹丸冲击响应和破坏都有影响。FML的四种不同叠层由玻璃纤维/环氧树脂和Ti-6Al-4V钛合金板组成,其总金属层厚度相同。第一部分介绍了完全夹紧的FML的实验研究,展示了性能参数,破坏机理和弹道阻力。第二部分涉及使用分析建模的FML的弹道冲击行为,该模型基于伴随研究获得的测试结果。等效质量弹簧系统用于通过各种机制获得层压板的瞬态变形,弹道极限和吸收能量。实验和分析弹道极限速度之间获得了良好的一致性。总能量吸收的最主要部分是弯曲和膜能量吸收(68%-72%),其中FML 4 / 3-0.3吸收较高百分比的上述能量,其次是FML 3/2和FML 2 / 1-0.6。在弹道极限下,FML的几种破坏机制预测的总能量吸收显示出与实验的合理匹配。

更新日期:2021-03-09
down
wechat
bug