当前位置: X-MOL 学术Shock Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A System Identification-Based Damage-Detection Method for Gravity Dams
Shock and Vibration ( IF 1.6 ) Pub Date : 2021-02-26 , DOI: 10.1155/2021/6653254
Masoud Mirtaheri 1 , Mojtaba Salkhordeh 1 , Masoud Mohammadgholiha 2
Affiliation  

Dams are essential infrastructures as they provide a range of economic, environmental, and social benefits to the local populations. Damage in the body of these structures may lead to an irreparable disaster. This paper presents a cost-effective vibration-based framework to identify the dynamic properties and damage of the dams. To this end, four commonly occurred damage scenarios, including (1) damage in the neck of the dam, (2) damage in the toe of the structure, (3) simultaneous damage in the neck and the toe of the dam, and (4) damage in the lifting joints of the dam, are considered. The proposed method is based on processing the acceleration response of a gravity dam under ambient excitations. First, the random decrement technique (RDT) is applied to determine the free-vibration of the structure using the structural response. Then, a combined method based on Hilbert–Huang Transform (HHT) and Wavelet Transform (WT) is presented to obtain the dynamic properties of the structure. Next, the cubic-spline technique is used to make the mode shapes differentiable. Finally, Continuous Wavelet Transform (CWT) is applied to the residual values of mode shape curvatures between intact and damaged structures to estimate the damage location. In order to evaluate the efficiency of the proposed method in field condition, 10% noise is added to the structural response. Results show promising accuracy in estimating the location of damage even when the structure is subjected to simultaneous damage in different locations.

中文翻译:

基于系统识别的重力坝损伤检测方法

大坝是必不可少的基础设施,因为它们为当地居民提供了一系列的经济,环境和社会效益。这些结构的身体损坏可能导致无法挽回的灾难。本文提出了一种具有成本效益的基于振动的框架,以识别大坝的动力特性和破坏。为此,常见的四种损坏情况包括:(1)大坝的颈部损坏,(2)结构的脚趾损坏,(3)脖子和大坝脚趾的同时损坏,以及( 4)考虑到大坝提升缝的损坏。所提出的方法基于处理环境激励下重力坝的加速度响应。首先,应用随机减量技术(RDT)使用结构响应来确定结构的自由振动。然后,提出了一种基于希尔伯特-黄变换(HHT)和小波变换(WT)的组合方法来获得结构的动力特性。接下来,三次样条技术用于使众数形状可区分。最后,将连续小波变换(CWT)应用于完整结构和损坏结构之间的模态曲率的残差值,以估计损坏位置。为了评估该方法在现场条件下的效率,将10%的噪声添加到结构响应中。结果表明,即使结构在不同位置同时受到损坏,估计损坏位置的准确性也很有希望。三次样条技术用于使众数形状可微。最后,将连续小波变换(CWT)应用于完整结构和损坏结构之间的模态曲率的残差值,以估计损坏位置。为了评估该方法在现场条件下的效率,将10%的噪声添加到结构响应中。结果表明,即使结构在不同位置同时受到损坏,估计损坏位置的准确性也很有希望。三次样条技术用于使众数形状可微。最后,将连续小波变换(CWT)应用于完整结构和损坏结构之间的模态曲率的残差值,以估计损坏位置。为了评估该方法在现场条件下的效率,将10%的噪声添加到结构响应中。结果表明,即使结构在不同位置同时受到损坏,估计损坏位置的准确性也很有希望。10%的噪声被添加到结构响应中。结果表明,即使结构在不同位置同时受到损坏,估计损坏位置的准确性也很有希望。10%的噪声被添加到结构响应中。结果表明,即使结构在不同位置同时受到损坏,估计损坏位置的准确性也很有希望。
更新日期:2021-02-26
down
wechat
bug