当前位置: X-MOL 学术Comput. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Bi-fidelity ensemble kalman method for PDE-constrained inverse problems in computational mechanics
Computational Mechanics ( IF 4.1 ) Pub Date : 2021-02-25 , DOI: 10.1007/s00466-021-01979-6
Han Gao , Jian-Xun Wang

Mathematical modeling and simulation of complex physical systems based on partial differential equations (PDEs) have been widely used in engineering and industrial applications. To enable reliable predictions, it is crucial yet challenging to calibrate the model by inferring unknown parameters/fields (e.g., boundary conditions, mechanical properties, and operating parameters) from sparse and noisy measurements, which is known as a PDE-constrained inverse problem. In this work, we develop a novel bi-fidelity (BF) ensemble Kalman inversion method to tackle this challenge, leveraging the accuracy of high-fidelity models and the efficiency of low-fidelity models. The core concept is to build a BF model with a limited number of high-fidelity samples for efficient forward propagations in the iterative ensemble Kalman inversion. Compared to existing inversion techniques, salient features of the proposed methods can be summarized as follow: (1) achieving the accuracy of high-fidelity models but at the cost of low-fidelity models, (2) being robust and derivative-free, and (3) being code non-intrusive, enabling ease of deployment for different applications. The proposed method has been assessed by three inverse problems that are relevant to fluid dynamics, including both parameter estimation and field inversion. The numerical results demonstrate the excellent performance of the proposed BF ensemble Kalman inversion approach, which drastically outperforms the standard Kalman inversion in terms of efficiency and accuracy.



中文翻译:

计算力学中受PDE约束的逆问题的双保真合奏卡尔曼方法

基于偏微分方程(PDE)的复杂物理系统的数学建模和仿真已广泛用于工程和工业应用中。为了实现可靠的预测,通过从稀疏和嘈杂的测量中推断出未知的参数/场(例如边界条件,机械性能和运行参数)来校准模型是至关重要的,但也存在挑战,这被称为PDE约束反问题。在这项工作中,我们利用高保真度模型的准确性和低保真度模型的效率,开发了一种新颖的双保真(BF)集成卡尔曼反演方法来应对这一挑战。核心概念是使用有限数量的高保真样本构建BF模型,以在迭代集成Kalman反演中实现有效的正向传播。与现有的反演技术相比,所提方法的显着特征可以归纳为:(1)实现高保真模型的准确性,但要以低保真模型为代价,(2)鲁棒且无导数,并且(3)代码是非侵入性的,从而简化了针对不同应用程序的部署。所提出的方法已通过与流体动力学相关的三个反问题进行了评估,包括参数估计和场反演。数值结果表明,所提出的高炉整体卡尔曼反演方法具有出色的性能,在效率和准确性方面均大大优于标准卡尔曼反演。(1)实现高保真模型的准确性,但要以低保真模型为代价,(2)健壮且没有导数,并且(3)是非侵入式代码,从而简化了针对不同应用程序的部署。所提出的方法已通过与流体动力学相关的三个反问题进行了评估,包括参数估计和场反演。数值结果表明,所提出的高炉整体卡尔曼反演方法具有出色的性能,在效率和准确性方面均大大优于标准卡尔曼反演。(1)实现高保真模型的准确性,但要以低保真模型为代价,(2)健壮且没有导数,并且(3)是非侵入式代码,从而简化了针对不同应用程序的部署。所提出的方法已通过与流体动力学相关的三个反问题进行了评估,包括参数估计和场反演。数值结果表明,所提出的高炉整体卡尔曼反演方法具有出色的性能,在效率和准确性方面均大大优于标准卡尔曼反演。包括参数估计和字段反演。数值结果证明了所提出的高炉整体卡尔曼反演方法的出色性能,该方法在效率和准确性方面大大优于标准卡尔曼反演。包括参数估计和字段反演。数值结果表明,所提出的高炉整体卡尔曼反演方法具有出色的性能,在效率和准确性方面均大大优于标准卡尔曼反演。

更新日期:2021-02-26
down
wechat
bug