当前位置: X-MOL 学术Exp. Therm. Fluid Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An accurate calorimeter-based method for the thermal characterization of heat pipes
Experimental Thermal and Fluid Science ( IF 3.2 ) Pub Date : 2021-02-25 , DOI: 10.1016/j.expthermflusci.2021.110381
Joseph P. Mooney , Jeff Punch , Nick Jeffers , Vanessa Egan

This study presents a method that can be used to accurately determine the thermal performance of a cylindrical heat pipe. In the method, the heat pipe is placed between two stainless steel 304 cylindrical blocks, configured as radial calorimeters that achieve thermal contact with the evaporator and condenser sections of the pipe. A flexible isothermal electrical heater mat surrounds the evaporator block, and a liquid-cooled copper pipe wrapped around the condenser block is used to remove heat. High precision thermistors (±0.01 K) positioned at fixed radial locations within the calorimeters are used to measure the heat supplied to the evaporator and the heat extracted from the condenser. One-dimensional radial conduction is assumed to occur within each calorimeter, and this enables the quantification of heat flows from the temperature readings. This assumption is verified by a steady-state analysis of the radial, axial and circumferential temperature differences within the evaporator calorimeter, based on data recorded for the lowest and highest heat inputs. Furthermore, a numerical model is used to confirm that end effects have a negligible influence on radial conduction within each calorimeter. This study concludes that the most commonly used characterization techniques for heat pipes can greatly overestimate thermal performance (15–32% for input powers of 7.5–25 W respectively) due to inaccurate quantification of heat flows into the evaporator and from the condenser. The calorimetric technique reported here achieves uncertainties in thermal resistance of <7.5% for low thermal loads (<12.5 W) and <6% for higher loads (>12.5 W). Moreover, the method achieves a significant improvement in the experimental thermal efficiency, with values of >75% recorded for all heat inputs in this study. The use of radial calorimeters in the current study obviates the requirement for calculating the losses from the heater to ambient, hence achieving low uncertainties in thermal resistance and effective thermal conductivity for a range of heat inputs.



中文翻译:

一种基于量热计的精确热管热特性分析方法

这项研究提出了一种可用于准确确定圆柱形热管热性能的方法。在该方法中,将热管放置在两个304不锈钢圆柱体之间,这些圆柱体被配置为径向量热仪,以实现与管的蒸发器和冷凝器部分的热接触。柔性等温电热垫围绕着蒸发器块,而缠绕在冷凝器块上的液冷铜管则用于除热。高精度热敏电阻(±位于热量表内固定径向位置的0.01 K)用于测量提供给蒸发器的热量和从冷凝器提取的热量。假定在每个量热计内发生一维径向传导,这使得可以根据温度读数量化热流。根据记录的最低热量输入和最高热量输入的数据,通过对蒸发器热量计内的径向,轴向和周向温度差进行稳态分析,可以验证此假设。此外,使用数值模型来确认端效应对每个量热计内的径向传导影响可忽略不计。这项研究得出的结论是,热管最常用的表征技术会大大高估热性能(输入功率为7时为15–32%)。分别为5-25 W),这是由于热量量化不准确导致流入蒸发器和冷凝器的热量。此处报道的量热技术在低热负荷(<12.5 W)时的热阻不确定度小于7.5%,而对于高负荷(> 12.5 W)的热阻不确定度小于6%。此外,该方法在实验热效率方面取得了显着改善,在本研究中记录的所有热输入值均> 75%。在当前研究中使用径向量热计消除了计算从加热器到周围环境的损耗的要求,因此对于一定范围的热输入,实现了热阻和有效导热率的低不确定性。此处报道的量热技术在低热负荷(<12.5 W)时的热阻不确定度小于7.5%,而对于高负荷(> 12.5 W)的热阻不确定度小于6%。此外,该方法在实验热效率方面取得了显着改善,在本研究中记录的所有热输入值均> 75%。在当前研究中使用径向量热计消除了计算从加热器到周围环境的损耗的要求,因此对于一定范围的热输入,实现了热阻和有效导热率的低不确定性。此处报道的量热技术在低热负荷(<12.5 W)时的热阻不确定度小于7.5%,而对于高负荷(> 12.5 W)的热阻不确定度小于6%。此外,该方法在实验热效率方面取得了显着改善,在本研究中记录的所有热输入值均> 75%。在当前研究中使用径向量热计消除了计算从加热器到周围环境的损耗的要求,因此对于一定范围的热输入,实现了热阻和有效导热率的低不确定性。在这项研究中,所有热量输入记录为75%。当前研究中使用径向量热仪消除了计算从加热器到周围环境的损耗的要求,因此对于一定范围的热输入,实现了热阻和有效导热率的低不确定性。在这项研究中,所有热量输入记录为75%。在当前研究中使用径向量热计消除了计算从加热器到周围环境的损耗的要求,因此对于一定范围的热输入,实现了热阻和有效导热率的低不确定性。

更新日期:2021-03-07
down
wechat
bug