当前位置: X-MOL 学术J. Opt. Soc. Amer. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Poles, physical bounds, and optimal materials predicted with approximated Mie coefficients
Journal of the Optical Society of America B ( IF 1.9 ) Pub Date : 2021-02-25
Claire-Hélène Guidet, Brian Stout, Redha Abdeddaim, and Nicolas Bonod

Resonant electromagnetic scattering with particles is a fundamental problem in electromagnetism that has been thoroughly investigated through the excitation of localized surface plasmon resonances (LSPR) in metallic particles or Mie resonances in high refractive index dielectrics. The interaction strength between electromagnetic waves and scatterers is limited by maximum and minimum physical bounds. Predicting the material composition of a scatterer that will maximize or minimize this interaction is an important objective, but its analytical treatment is challenged by the complexity of the functions appearing in the multipolar Mie theory. Here, we combine different kinds of expansions adapted to the different functions appearing in Mie scattering coefficients to derive simple and accurate expressions of the scattering electric and magnetic Mie coefficients in the form of rational functions. We demonstrate the accuracy of these expressions for metallic and dielectric homogeneous particles before deriving the analytical expressions of the complex eigen-frequencies (poles) for both cases. Approximate Mie coefficients can be used to derive simple but accurate expressions for determining complex dielectric permittivities that lead to poles of the dipolar Mie coefficient and ideal absorption conditions. The same expressions also predict the real dielectric permittivities that maximize (unitary limit) or minimize (anapole) electromagnetic scattering.

中文翻译:

利用近似Mie系数预测的极点,物理边界和最佳材料

粒子的共振电磁散射是电磁学中的一个基本问题,已通过激发金属粒子中的局部表面等离振子共振(LSPR)或高折射率电介质中的Mie共振来进行彻底研究。电磁波和散射体之间的相互作用强度受到最大和最小物理范围的限制。预测将最大化或最小化这种相互作用的散射体的材料组成是一个重要的目标,但是其分析处理受到多极Mie理论中出现的功能复杂性的挑战。这里,我们结合适合于Mie散射系数中出现的不同函数的不同类型的展开,以有理函数的形式导出散射电和磁Mie系数的简单准确的表达式。我们在推导两种情况下复杂本征频率(极点)的分析表达式之前,证明了这些表达式对于金属和介电均质粒子的准确性。近似Mie系数可用于得出简单但准确的表达式,用于确定导致偶极Mie系数极点和理想吸收条件的复数介电常数。相同的表达式还可以预测使电磁散射最大化(单位极限)或最小化(偶极子)的实际介电常数。我们在推导两种情况下复杂本征频率(极点)的分析表达式之前,证明了这些表达式对于金属和介电均质粒子的准确性。近似Mie系数可用于得出简单但准确的表达式,用于确定导致偶极Mie系数极点和理想吸收条件的复数介电常数。相同的表达式还预测了实际的介电常数,该介电常数使电磁散射最大化(单一极限)或最小化(偶极)。我们在推导两种情况下复杂本征频率(极点)的分析表达式之前,证明了这些表达式对于金属和介电均质粒子的准确性。近似Mie系数可用于得出简单但准确的表达式,用于确定导致偶极Mie系数极点和理想吸收条件的复数介电常数。相同的表达式还预测了实际的介电常数,该介电常数使电磁散射最大化(单一极限)或最小化(偶极)。近似Mie系数可用于得出简单但准确的表达式,用于确定导致偶极Mie系数极点和理想吸收条件的复数介电常数。相同的表达式还预测了实际的介电常数,该介电常数使电磁散射最大化(单一极限)或最小化(偶极)。近似Mie系数可用于得出简单但准确的表达式,用于确定导致偶极Mie系数极点和理想吸收条件的复数介电常数。相同的表达式还预测了实际的介电常数,该介电常数使电磁散射最大化(单一极限)或最小化(偶极子)。
更新日期:2021-02-24
down
wechat
bug