当前位置: X-MOL 学术Phys. Rev. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photon-recoil and laser-focusing limits to Rydberg gate fidelity
Physical Review A ( IF 2.9 ) Pub Date : 2021-02-24 , DOI: 10.1103/physreva.103.022424
F. Robicheaux , T. M. Graham , M. Saffman

Limits to Rydberg gate fidelity that arise from the entanglement of internal states of neutral atoms with the motional degrees of freedom due to the momentum kick from photon absorption and re-emission is quantified. This occurs when the atom is in a superposition of internal states but only one of these states is manipulated by visible or UV photons. The Schrödinger equation that describes this situation is presented and two cases are explored. In the first case, the entanglement arises because the spatial wave function shifts due to the separation in time between excitation and stimulated emission. For neutral atoms in a harmonic trap, the decoherence can be expressed within a sudden approximation when the duration of the laser pulses are shorter than the harmonic oscillator period. In this limit, the decoherence is given by simple analytic formulas that account for the momentum of the photon, the temperature of the atoms, the harmonic oscillator frequency, and atomic mass. In the second case, there is a reduction in gate fidelity because the photons causing absorption and stimulated emission are in focused beam modes. This leads to a dependence of the optically induced changes in the internal states on the center of mass atomic position. In the limit where the time between pulses is short, the decoherence can be expressed as a simple analytic formula involving the laser waist, temperature of the atoms, the trap frequency, and the atomic mass. These limits on gate fidelity are studied for the standard π2ππ Rydberg gate and a protocol based on a single adiabatic pulse with a Gaussian envelope.

中文翻译:

光子反冲和激光聚焦限制了里德伯格门的保真度

量化了由于光子吸收和再发射引起的动量反冲而使中性原子的内部状态与运动自由度发生纠缠而引起的里德堡门保真度的极限。当原子处于内部状态的叠加中,但是只有这些状态之一被可见光或UV光子操纵时,会发生这种情况。提出了描述这种情况的薛定ding方程,并探讨了两种情况。在第一种情况下,由于空间波函数由于激发和激发发射之间的时间间隔而移动,因此产生了纠缠。对于谐波陷阱中的中性原子,当激光脉冲的持续时间短于谐波振荡器周期时,可以在突然近似中表示退相干。在这个极限 通过简单的解析公式给出了退相干,解析公式考虑了光子的动量,原子的温度,谐波振荡器的频率和原子的质量。在第二种情况下,栅极保真度降低,因为引起吸收和受激发射的光子处于聚焦光束模式。这导致内部状态的光诱导变化依赖于质原子位置的中心。在脉冲之间的时间很短的极限内,退相干可以表示为简单的解析公式,其中包括激光束腰,原子温度,陷阱频率和原子质量。针对门极保真度的这些限制已针对标准进行了研究 在第二种情况下,栅极保真度降低,因为引起吸收和受激发射的光子处于聚焦光束模式。这导致内部状态的光诱导变化依赖于质原子位置的中心。在脉冲之间的时间很短的极限内,退相干可以表示为简单的解析公式,其中包括激光束腰,原子温度,陷阱频率和原子质量。针对门极保真度的这些限制已针对标准进行了研究 在第二种情况下,栅极保真度降低,因为引起吸收和受激发射的光子处于聚焦光束模式。这导致内部状态的光诱导变化依赖于质原子位置的中心。在脉冲之间的时间很短的极限内,退相干可以表示为简单的解析公式,其中包括激光束腰,原子温度,陷阱频率和原子质量。针对门极保真度的这些限制已针对标准进行了研究 退相干可以表示为一个简单的解析公式,其中包括激光束腰,原子温度,陷阱频率和原子质量。针对门极保真度的这些限制已针对标准进行了研究 退相干可以表示为一个简单的解析公式,其中包括激光束腰,原子温度,陷阱频率和原子质量。针对门极保真度的这些限制已针对标准进行了研究π-2π-π Rydberg门和基于具有高斯包络的单个绝热脉冲的协议。
更新日期:2021-02-24
down
wechat
bug