当前位置: X-MOL 学术Rev. Mod. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exceptional topology of non-Hermitian systems
Reviews of Modern Physics ( IF 44.1 ) Pub Date : 2021-02-24 , DOI: 10.1103/revmodphys.93.015005
Emil J. Bergholtz , Jan Carl Budich , Flore K. Kunst

The current understanding of the role of topology in non-Hermitian (NH) systems and its far-reaching physical consequences observable in a range of dissipative settings are reviewed. In particular, how the paramount and genuinely NH concept of exceptional degeneracies, at which both eigenvalues and eigenvectors coalesce, leads to phenomena drastically distinct from the familiar Hermitian realm is discussed. An immediate consequence is the ubiquitous occurrence of nodal NH topological phases with concomitant open Fermi-Seifert surfaces, where conventional band-touching points are replaced by the aforementioned exceptional degeneracies. Furthermore, new notions of gapped phases including topological phases in single-band systems are detailed, and the manner in which a given physical context may affect the symmetry-based topological classification is clarified. A unique property of NH systems with relevance beyond the field of topological phases consists of the anomalous relation between bulk and boundary physics, stemming from the striking sensitivity of NH matrices to boundary conditions. Unifying several complementary insights recently reported in this context, a picture of intriguing phenomena such as the NH bulk-boundary correspondence and the NH skin effect is put together. Finally, applications of NH topology in both classical systems including optical setups with gain and loss, electric circuits, and mechanical systems and genuine quantum systems such as electronic transport settings at material junctions and dissipative cold-atom setups are reviewed.

中文翻译:

非Hermitian系统的特殊拓扑

审查了当前对拓扑在非Hermitian(NH)系统中的作用及其在一系列耗散环境中可观察到的深远物理后果的理解。特别是,讨论了异常简并性的至高无上和真正的NH概念(特征值和特征向量在此融合)如何导致与熟悉的Hermitian领域截然不同的现象。一个直接的后果就是节点NH拓扑相的普遍出现,伴随着费米-塞弗特表面的开放,在其中传统的带接触点被上述特殊的简并性所取代。此外,还详细介绍了单带系统中包括拓扑阶段在内的间隙阶段的新概念,阐明了给定物理环境可能影响基于对称性的拓扑分类的方式。NH系统具有与拓扑阶段无关的独特特性,其原因在于NH矩阵对边界条件的惊人敏感性,是体与边界物理之间的异常关系。结合最近在此背景下报道的一些补充见解,将诸如NH本体边界对应关系和NH趋肤效应等有趣现象的图片放在一起。最后,对NH拓扑在经典系统中的应用进行了回顾,包括带增益和损耗的光学装置,电路和机械系统以及真正的量子系统,例如材料结处的电子传输设置和耗散的冷原子设置。NH系统具有与拓扑阶段无关的独特特性,其原因在于NH矩阵对边界条件的惊人敏感性,是体与边界物理之间的异常关系。结合最近在此背景下报道的一些补充见解,将诸如NH本体边界对应关系和NH趋肤效应等有趣现象的图片放在一起。最后,对NH拓扑在经典系统中的应用进行了回顾,包括带增益和损耗的光学装置,电路和机械系统以及真正的量子系统,例如在材料结处的电子传输设置和耗散的冷原子设置。NH系统具有与拓扑阶段无关的独特特性,其原因在于NH矩阵对边界条件的惊人敏感性,是体与边界物理之间的异常关系。结合最近在此背景下报道的一些补充见解,将诸如NH本体边界对应关系和NH趋肤效应等有趣现象的图片放在一起。最后,对NH拓扑在经典系统中的应用进行了回顾,包括带增益和损耗的光学装置,电路和机械系统以及真正的量子系统,例如在材料结处的电子传输设置和耗散的冷原子设置。源于NH矩阵对边界条件的惊人敏感性。结合最近在此背景下报道的一些补充见解,将诸如NH本体-边界对应关系和NH趋肤效应等有趣现象的图片汇总在一起。最后,对NH拓扑在经典系统中的应用进行了回顾,包括带增益和损耗的光学装置,电路和机械系统以及真正的量子系统,例如在材料结处的电子传输设置和耗散的冷原子设置。源于NH矩阵对边界条件的惊人敏感性。结合最近在此背景下报道的一些补充见解,将诸如NH本体-边界对应关系和NH趋肤效应等有趣现象的图片汇总在一起。最后,对NH拓扑在经典系统中的应用进行了回顾,包括带增益和损耗的光学装置,电路和机械系统以及真正的量子系统,例如在材料结处的电子传输设置和耗散的冷原子设置。
更新日期:2021-02-24
down
wechat
bug