当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deterministic multi-qubit entanglement in a quantum network
Nature ( IF 64.8 ) Pub Date : 2021-02-24 , DOI: 10.1038/s41586-021-03288-7
Youpeng Zhong 1, 2 , Hung-Shen Chang 1 , Audrey Bienfait 1, 3 , Étienne Dumur 1, 4, 5 , Ming-Han Chou 1, 6 , Christopher R Conner 1 , Joel Grebel 1 , Rhys G Povey 1, 6 , Haoxiong Yan 1 , David I Schuster 1, 6 , Andrew N Cleland 1, 4
Affiliation  

The generation of high-fidelity distributed multi-qubit entanglement is a challenging task for large-scale quantum communication and computational networks1,2,3,4. The deterministic entanglement of two remote qubits has recently been demonstrated with both photons5,6,7,8,9,10 and phonons11. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily owing to limited state-transfer fidelities. Here we report a quantum network comprising two superconducting quantum nodes connected by a one-metre-long superconducting coaxial cable, where each node includes three interconnected qubits. By directly connecting the cable to one qubit in each node, we transfer quantum states between the nodes with a process fidelity of 0.911 ± 0.008. We also prepare a three-qubit Greenberger–Horne–Zeilinger (GHZ) state12,13,14 in one node and deterministically transfer this state to the other node, with a transferred-state fidelity of 0.656 ± 0.014. We further use this system to deterministically generate a globally distributed two-node, six-qubit GHZ state with a state fidelity of 0.722 ± 0.021. The GHZ state fidelities are clearly above the threshold of 1/2 for genuine multipartite entanglement15, showing that this architecture can be used to coherently link together multiple superconducting quantum processors, providing a modular approach for building large-scale quantum computers16,17.



中文翻译:

量子网络中的确定性多量子比特纠缠

生成高保真分布式多量子比特纠缠对于大规模量子通信和计算网络1,2,3,4来说是一项具有挑战性的任务。最近用光子5、6、7、8、9、10和声子11证明了两个远程量子位的确定性纠缠. 然而,多量子比特纠缠的确定性产生和传输尚未得到证实,这主要是由于有限的状态转移保真度。在这里,我们报告了一个量子网络,该网络包含两个超导量子节点,这些节点通过一米长的超导同轴电缆连接,其中每个节点包括三个互连的量子位。通过将电缆直接连接到每个节点中的一个量子位,我们以 0.911 ± 0.008 的过程保真度在节点之间传输量子态。我们还准备了一个三量子位的 Greenberger–Horne–Zeilinger (GHZ) 态12,13,14在一个节点中,并确定性地将此状态传输到另一个节点,传输状态保真度为 0.656 ± 0.014。我们进一步使用该系统确定性地生成全局分布的双节点、六量子位 GHZ 状态,状态保真度为 0.722 ± 0.021。GHZ 状态保真度明显高于真正多部分纠缠15的 1/2 阈值,表明该架构可用于将多个超导量子处理器相干地链接在一起,为构建大型量子计算机16,17提供模块化方法。

更新日期:2021-02-24
down
wechat
bug