当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced activity and selectivity of electrocatalytic denitrification by highly dispersed CuPd bimetals on reduced graphene oxide
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2021-02-23 , DOI: 10.1016/j.cej.2021.129074
Zehan Chen , Yue Wang , Jinxiu Wang , Zhangqiang Hu , Wei Teng , Jianwei Fan , Wei-xian Zhang

Electrocatalytic denitrification is regarded as an environmentally friendly and effective technology for nitrate contaminated water. Enhanced activity of electrocatalysis and selectivity to benign N2 by tuning the properties of cathode materials are still desired. Herein, well-dispersed CuPd bimetals anchored on reduced graphene oxide (CuPd@rGO) are prepared via wet impregnation and subsequent thermal treatment. The synthesized materials possess relatively large surface areas (150–230 m2/g) and dispersive bimetal nanocrystals (8–25 nm, consisting of Cu, Pd, and Cu2.991Pd1.009 alloy). This catalyst achieves maximal nitrate conversion yield of 96.7% with the highest N2 selectivity of 85.5% (in the neutral electrolyte of 100 mg-N/L NaNO3), nitrate removal capacity of 5611 mg-N/mgCuPd (at 300 mg-N/L NaNO3), and superior stability after multiple cycles. The activity and stability of electrocatalyst are much higher than that of most of reported CuPd supported materials. Such outstanding performance owes to the synergistic cooperation of finely dispersive CuPd bimetals and high conductivity of rGO supports. Meanwhile, the effects of material property (e.g., metal loading) and various electrochemical conditions (e.g., potential, pH, concentration of nitrate, and concentration of electrolyte) on activity and selectivity of denitrification, as well as reaction kinetics, are systematically investigated. The cooperative denitrification mechanism of Cu, Pd and rGO is explored and creatively supported by cyclic voltammetry (CV), in-situ pH detection, inductively coupled plasma mass spectrometer (ICP-MS), and the comparison of reaction kinetics, interpreted as NO3-NO2-N2 and NO3-NO2-NH4+N2.



中文翻译:

高度分散的CuPd双金属在还原的氧化石墨烯上的电催化反硝化活性和选择性增强

电催化反硝化被认为是硝酸盐污染的水的一种环境友好和有效的技术。仍然需要通过调节阴极材料的性能来增强电催化活性和对良性N 2的选择性。在此,通过湿法浸渍和随后的热处理来制备锚固在还原的氧化石墨烯(CuPd @ rGO)上的分散良好的CuPd双金属。合成材料具有相对较大的表面积(150–230 m 2 / g)和分散双金属纳米晶体(8–25 nm,由Cu,Pd和Cu 2.991 Pd 1.009合金组成)。该催化剂在N 2最高的情况下可实现96.7%的最大硝酸盐转化率选择性为85.5%(在中性电解质100 mg-N / L NaNO 3中),硝酸盐去除能力为5611 mg-N / mg CuPd(在300 mg-N / L NaNO 3下)),并在多个循环后具有出色的稳定性。电催化剂的活性和稳定性远远高于大多数报道的CuPd负载材料。如此出色的性能归因于精细分散的CuPd双金属的协同合作以及rGO载体的高电导率。同时,系统地研究了材料性质(例如金属负载)和各种电化学条件(例如电势,pH,硝酸盐浓度和电解质浓度)对反硝化活性和选择性以及反应动力学的影响。Cu,Pd和RGO的协同脱氮机构探索和通过循环伏安法(CV)创造性支撑,原位 pH检测,电感耦合等离子体质谱仪(ICP-MS)和反应动力学比较,解释为 3--2个--ñ2个3--2个--NH4+ñ2个

更新日期:2021-03-07
down
wechat
bug