当前位置: X-MOL 学术Tree Genet. Genomes › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sapling and coppice biomass heritabilities and potential gains from Eucalyptus polybractea progeny trials
Tree Genetics & Genomes ( IF 2.4 ) Pub Date : 2021-02-22 , DOI: 10.1007/s11295-021-01499-7
Beren Spencer , Richard Mazanec , Mark Gibberd , Ayalsew Zerihun

Eucalyptus polybractea has been planted as a short-rotation coppice crop for bioenergy in Western Australia. Historical breeding selections were based on sapling biomass and despite a long history as a coppice crop, the genetic parameters of coppicing are unknown. Here, we assessed sapling biomass at ages 3 and 6 from three progeny trials across southern Australia. After the second sapling assessment, all trees were harvested. Coppice biomass was assessed 3.5 years later. Mortality following harvest was between 1 and 2%. Additive genetic variance for the 6-sapling estimate at one site was not significant. Sapling heritabilities were between 0.06 and 0.36 at 3 years, and 0.18 and 0.20 at 6 years. The heritability for the coppice biomass was between 0.07 and 0.17. Within-site genetic and phenotypic correlations were strong between all biomass assessments. Cross-site correlations were not different from unity. Selections based on net breeding values revealed positive gains in sapling and coppice biomass. Lower or negative gains were estimated if 3-year sapling selections were applied to the coppice assessments (−7.1% to 3.4%) with useful families culled. Positive gains were obtained if 6-year sapling selections were applied to the coppice assessment (6.4% to 9.3%) but these were lower than those obtained by applying coppice selections to the coppice assessment (8.4% to 14.8%). Removal of poor performing families and families that displayed fast sapling growth rates but under-performed as coppice will benefit potential coppice production. These results indicate that selections should be made using coppice data.



中文翻译:

幼树和小灌木林生物量遗传力以及桉树后代试验的潜在收获

多桉树西澳大利亚州已将其作为短轮距的小灌木林作物用于生物能源种植。历史上的育种选择基于幼树生物量,尽管作为小灌木林作物已有很长的历史,但育种的遗传参数仍是未知的。在这里,我们从澳大利亚南部的三个子代试验中评估了3岁和6岁幼树的生物量。在第二次树苗评估之后,收获了所有树木。3.5年后评估了Coppice生物量。收获后的死亡率在1-2%之间。在一个位置进行6倍幼树估计的加性遗传方差不显着。幼树的遗传力在3年时介于0.06至0.36之间,在6年时介于0.18至0.20之间。小灌木林生物量的遗传力在0.07至0.17之间。所有生物量评估之间的现场遗传和表型相关性均很强。跨站点关联与统一没有不同。基于净育种值的选择显示出幼树和小灌木林生物量的正增长。如果将3年树苗的选择应用于小灌木林评估(有用的家庭被剔除,则为-7.1%至3.4%),估计会获得较低或负面的收益。如果将6年树苗选择应用于小灌木林评估,则会获得积极的收益(6.4%至9.3%),但低于通过将小灌木林选择应用于小灌木林评估的结果(8.4%至14.8%)。搬迁表现不佳的家庭和成长速度快但幼树表现不佳的家庭,将有利于潜在的小灌木林生产。这些结果表明应该使用小灌木林数据进行选择。基于净育种值的选择显示出幼树和小灌木林生物量的正增长。如果将3年树苗的选择应用于小灌木林评估(有用的家庭被剔除,则为-7.1%至3.4%),估计会获得较低或负面的收益。如果将6年树苗选择应用于小灌木林评估,则会获得正收益(6.4%至9.3%),但低于通过对小灌木林评估应用小灌木林选择所获得的收益(8.4%至14.8%)。搬迁表现不佳的家庭和成长速度快但幼树表现不佳的家庭,将有利于潜在的小灌木林生产。这些结果表明应该使用小灌木林数据进行选择。基于净育种值的选择显示出幼树和小灌木林生物量的正增长。如果将3年树苗的选择应用于小灌木林评估(有用的家庭被剔除,则为-7.1%至3.4%),估计会获得较低或负面的收益。如果将6年树苗选择应用于小灌木林评估,则会获得正收益(6.4%至9.3%),但低于通过对小灌木林评估应用小灌木林选择所获得的收益(8.4%至14.8%)。搬迁表现不佳的家庭和成长速度快但幼树表现不佳的家庭,将有利于潜在的小灌木林生产。这些结果表明应该使用小灌木林数据进行选择。如果将3年树苗的选择应用于小灌木林评估(有用的家庭被剔除,则为-7.1%至3.4%),估计会获得较低或负面的收益。如果将6年树苗选择应用于小灌木林评估,则会获得正收益(6.4%至9.3%),但低于通过对小灌木林评估应用小灌木林选择所获得的收益(8.4%至14.8%)。搬迁表现不佳的家庭和成长速度快但幼树表现不佳的家庭,将有利于潜在的小灌木林生产。这些结果表明应该使用小灌木林数据进行选择。如果将3年树苗的选择应用于小灌木林评估(有用的家庭被剔除,则为-7.1%至3.4%),估计会获得较低或负面的收益。如果将6年树苗选择应用于小灌木林评估,则会获得正收益(6.4%至9.3%),但低于通过对小灌木林评估应用小灌木林选择所获得的收益(8.4%至14.8%)。搬迁表现不佳的家庭和成长速度快但幼树表现不佳的家庭,将有利于潜在的小灌木林生产。这些结果表明应该使用小灌木林数据进行选择。3%),但低于通过对小矮人评估进行小矮人评估而获得的结果(8.4%至14.8%)。搬迁表现不佳的家庭和成长速度快但幼树表现不佳的家庭,将有利于潜在的小灌木林生产。这些结果表明应该使用小灌木林数据进行选择。3%),但低于通过对小矮人评估进行小矮人评估而获得的结果(8.4%至14.8%)。搬迁表现不佳的家庭和成长速度快但幼树表现不佳的家庭,将有利于潜在的小灌木林生产。这些结果表明应该使用小灌木林数据进行选择。

更新日期:2021-02-23
down
wechat
bug