当前位置:
X-MOL 学术
›
Mathematics
›
论文详情
The Functional Equation max{χ(xy),χ(xy-1)}=χ(x)χ(y) on Groups and Related Results
Mathematics ( IF 1.747 ) Pub Date : 2021-02-14 , DOI: 10.3390/math9040382 Muhammad Sarfraz; Qi Liu; Yongjin Li
Mathematics ( IF 1.747 ) Pub Date : 2021-02-14 , DOI: 10.3390/math9040382 Muhammad Sarfraz; Qi Liu; Yongjin Li
This research paper focuses on the investigation of the solutions of the maximum functional equation for every where G is any group. We determine that if a group G is divisible by two and three, then every non-zero solution is necessarily strictly positive; by the work of Toborg, we can then conclude that the solutions are exactly the for an additive function . Moreover, our investigation yields reliable solutions to a functional equation on any group G, instead of being divisible by two and three. We also prove the existence of normal subgroups and of any group G that satisfy some properties, and any solution can be interpreted as a function on the abelian factor group .
中文翻译:
群和相关结果上的函数方程max {χ(xy),χ(xy-1)} =χ(x)χ(y)
本研究论文着重于解决方案的研究 泛函方程 每一个 其中G是任何组。我们确定如果组G可被2和3整除,则每个非零解都必须严格为正;通过Toborg的工作,我们可以得出结论,解决方案正是 用于加法功能 。此外,我们的研究为任何G组的函数方程提供了可靠的解,而不是被二和三整除。我们还证明了正常亚群的存在 和 满足某些性质的任意组G的任意一个,并且任何解都可以解释为阿贝尔因子组的函数 。
更新日期:2021-02-22
中文翻译:

群和相关结果上的函数方程max {χ(xy),χ(xy-1)} =χ(x)χ(y)
本研究论文着重于解决方案的研究