当前位置:
X-MOL 学术
›
Comm. Pure Appl. Math.
›
论文详情
Multitime Distribution in Discrete Polynuclear Growth
Communications on Pure and Applied Mathematics ( IF 2.676 ) Pub Date : 2021-02-22 , DOI: 10.1002/cpa.21980 Kurt Johansson; Mustazee Rahman
Communications on Pure and Applied Mathematics ( IF 2.676 ) Pub Date : 2021-02-22 , DOI: 10.1002/cpa.21980 Kurt Johansson; Mustazee Rahman
We study the multitime distribution in a discrete polynuclear growth model or, equivalently, in directed last‐passage percolation with geometric weights. A formula for the joint multitime distribution function is derived in the discrete setting. It takes the form of a multiple contour integral of a block Fredholm determinant. The asymptotic multitime distribution is then computed by taking the appropriate KPZ‐scaling limit of this formula. This distribution is expected to be universal for models in the Kardar‐Parisi‐Zhang universality class. © 2020 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.
中文翻译:
离散多核生长中的多次分布
我们研究了离散多核增长模型中的多次分布,或者等效地,研究了具有几何权重的定向最后通过渗流。在离散设置中导出联合多时分布函数的公式。它采用块Fredholm行列式的多重轮廓积分的形式。然后通过采用该公式的适当KPZ标度极限来计算渐近多时分布。对于Kardar-Parisi-Zhang通用性模型中的模型,预期该分布是通用的。©2020作者。Wiley Periodicals LLC出版的《纯数学和应用数学通讯》。
更新日期:2021-02-22
中文翻译:

离散多核生长中的多次分布
我们研究了离散多核增长模型中的多次分布,或者等效地,研究了具有几何权重的定向最后通过渗流。在离散设置中导出联合多时分布函数的公式。它采用块Fredholm行列式的多重轮廓积分的形式。然后通过采用该公式的适当KPZ标度极限来计算渐近多时分布。对于Kardar-Parisi-Zhang通用性模型中的模型,预期该分布是通用的。©2020作者。Wiley Periodicals LLC出版的《纯数学和应用数学通讯》。