当前位置:
X-MOL 学术
›
J. Comput. Appl. Math.
›
论文详情
Nonlinearity continuation method for steady-state groundwater flow modeling in variably saturated conditions
Journal of Computational and Applied Mathematics ( IF 2.037 ) Pub Date : 2021-02-22 , DOI: 10.1016/j.cam.2021.113502 Denis Anuprienko; Ivan Kapyrin
中文翻译:
可变饱和条件下地下水稳态流场的非线性连续化方法
更新日期:2021-02-22
Journal of Computational and Applied Mathematics ( IF 2.037 ) Pub Date : 2021-02-22 , DOI: 10.1016/j.cam.2021.113502 Denis Anuprienko; Ivan Kapyrin
Application of nonlinearity continuation method to numerical solution of steady-state groundwater flow in variably saturated conditions is presented. In order to solve the system of nonlinear equations obtained by finite volume discretization of steady-state Richards equation, a series of problems with increasing nonlinearity are solved using the Newton method. This approach is compared to pseudo-transient method on several test cases, including real site problems and involving parallel computations.
中文翻译:

可变饱和条件下地下水稳态流场的非线性连续化方法
提出了非线性连续化方法在可变饱和条件下稳态地下水流数值解中的应用。为了解决由稳态Richards方程的有限体积离散化获得的非线性方程组,使用牛顿法解决了一系列非线性增加的问题。将该方法与伪瞬态方法在几个测试案例中进行了比较,包括实际站点问题和涉及并行计算。